Strong Cosmic Censorship in Orthogonal Bianchi Class B Perfect Fluids and Vacuum Models

  • Katharina RadermacherEmail author
Open Access


The Strong Cosmic Censorship conjecture states that for generic initial data to Einstein’s field equations, the maximal globally hyperbolic development is inextendible. We prove this conjecture in the class of orthogonal Bianchi class B perfect fluids and vacuum spacetimes, by showing that unboundedness of certain curvature invariants such as the Kretschmann scalar is a generic property. The only spacetimes where this scalar remains bounded exhibit local rotational symmetry or are of plane wave equilibrium type. We further investigate the qualitative behaviour of solutions towards the initial singularity. To this end, we work in the expansion-normalised variables introduced by Hewitt–Wainwright and show that a set of full measure, which is also a countable intersection of open and dense sets in the state space, yields convergence to a specific subarc of the Kasner parabola. We further give an explicit construction enabling the translation between these variables and geometric initial data to Einstein’s equations.



  1. 1.
    Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. (2) 149(1), 183–217 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ellis, G.F.R., MacCallum, M.A.H.: A class of homogeneous cosmological models. Commun. Math. Phys. 12, 108–141 (1969)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fourès-Bruhat, Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Galloway, G., Ling, E.: Some remarks on the \({C}^0\)-(in)extendibility of spacetimes. arXiv:1610.03008v1 [math.DG]
  7. 7.
    Hewitt, C.G., Horwood, J.T., Wainwright, J.: Asymptotic dynamics of the exceptional Bianchi cosmologies. Class. Quantum Gravity 20(9), 1743–1756 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hervik, S., Kunduri, H.K., Lucietti, J.: Homogeneous plane-wave spacetimes and their stability. Class. Quantum Gravity 21(2), 575–587 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hewitt, C.G., Wainwright, J.: Orthogonally transitive \(G_2\) cosmologies. Class. Quantum Gravity 7(12), 2295–2316 (1990)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Hewitt, C.G., Wainwright, J.: A dynamical systems approach to Bianchi cosmologies: orthogonal models of class B. Class. Quantum Gravity 10(1), 99–124 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Krasiński, A., Behr, C.G., Schücking, E., Estabrook, F.B., Wahlquist, H.D., Ellis, G.F.R., Jantzen, R., Kundt, W.: The Bianchi classification in the Schücking–Behr approach. Gen. Relativ. Gravit. 35(3), 475–489 (2003)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    MacCallum, M.A.H.: Cosmological models from a geometric point of view. In: Cargèse Lectures in Physics, vol. 6, pp. 61–174 , Gordon and Breach, New York (1973)Google Scholar
  13. 13.
    O’Neill, B.: Semi-Riemannian Geometry, Volume 103 of Pure and Applied Mathematics. With Applications to Relativity. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1983)Google Scholar
  14. 14.
    Ringström, H.: Curvature blow up in Bianchi VIII and IX vacuum spacetimes. Class. Quantum Gravity 17(4), 713–731 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ringström, H.: On the Asymptotics of Bianchi Class A Spacetimes. KTH Stockholm, Thesis (2000)Google Scholar
  16. 16.
    Ringström, H.: The Bianchi IX attractor. Ann. Henri Poincaré 2(3), 405–500 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ringström, H.: The Cauchy problem in general relativity, vol. 6. European Mathematical Society (2009)Google Scholar
  18. 18.
    Ringström, H.: On the Topology and Future Stability of the Universe. Oxford Mathematical Monographs. Oxford University Press, Oxford (2013)CrossRefzbMATHGoogle Scholar
  19. 19.
    Sbierski, J.: The \({C}^0\)-inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian Geometry. arXiv:1507.00601v2 [gr-qc]
  20. 20.
    Schrödinger, E.: Expanding Universes. Cambridge University Press, Cambridge (1956)CrossRefzbMATHGoogle Scholar
  21. 21.
    Stewart, J.M., Ellis, G.F.R.: Solutions of Einstein’s equations for a fluid which exhibit local rotational symmetry. J. Math. Phys. 9(7), 1072–1082 (1968)ADSCrossRefGoogle Scholar
  22. 22.
    Wainwright, J.: A classification scheme for non-rotating inhomogeneous cosmologies. J. Phys. A Math. Gen. 12(11), 2015 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)CrossRefzbMATHGoogle Scholar
  24. 24.
    Warner, F.W.: Foundations of differentiable manifolds and Lie groups. Scott, Foresman and Co., Glenview (1971)zbMATHGoogle Scholar
  25. 25.
    Wainwright, J., Ellis, G.F.R. (eds.): Dynamical systems in cosmology. Cambridge University Press, Cambridge (1997). Papers from the workshop held in Cape Town (1994)Google Scholar
  26. 26.
    Wainwright, J., Hsu, L.: A dynamical systems approach to Bianchi cosmologies: orthogonal models of class \(A\). Class. Quantum Gravity 6(10), 1409–1431 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

OpenAccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations