Annales Henri Poincaré

, Volume 20, Issue 2, pp 527–541 | Cite as

On the Relation of Lie Algebroids to Constrained Systems and their BV/BFV Formulation

  • Noriaki IkedaEmail author
  • Thomas Strobl


We observe that a system of irreducible, fiber-linear, first-class constraints on \(T^*M\) is equivalent to the definition of a foliation Lie algebroid over M. The BFV formulation of the constrained system is given by the Hamiltonian lift of the Vaintrob description (E[1], Q) of the Lie algebroid to its cotangent bundle \(T^*E[1]\). Affine deformations of the constraints are parametrized by the first Lie algebroid cohomology \(H^1_Q\) and lead to irreducible constraints also for much more general Lie algebroids such as Dirac structures; the modified BFV function follows by the addition of a representative of the deformation charge. Adding a Hamiltonian to the system corresponds to a metric g on M. Evolution invariance of the constraint surface introduces a connection \(\nabla \) on E and one reobtains the compatibility of g with \((E,\rho ,\nabla )\) found previously in the literature. The covariantization of the Hamiltonian to a function on \(T^*E[1]\) serves as a BFV-Hamiltonian, iff, in addition, this connection is compatible with the Lie algebroid structure, turning \((E,\rho ,[ \cdot , \cdot ],\nabla )\) into a Cartan–Lie algebroid. The BV formulation of the system is obtained from BFV by a (time-dependent) AKSZ procedure.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



T.S. wants to thank Anton Alekseev for a long-lasting and multiply inspiring friendship. N.I. thanks Anton Alekseev and the university of Geneva for the permission of his staying as a visiting scientist and their hospitality. We gratefully acknowledge the interest and critical and important feedback of Albin Grataloup and Sylvain Lavau on earlier versions of this paper. We also thank Camille Laurent–Gengoux for remarks on the manuscript and Maxim Grigoriev for drawing our attention to the references [18, 19] and [3]. This work was supported by the project MODFLAT of the European Research Council (ERC) and the NCCR SwissMAP of the Swiss National Science Foundation.


  1. 1.
    Alekseev, A., Strobl, T.: Current algebras and differential geometry. JHEP 0503, 035 (2005)Google Scholar
  2. 2.
    Alexandrov, M., Kontsevich, M., Schwartz, A., Zaboronsky, O.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12, 1405 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barnich, G.: A note on gauge systems from the point of view of Lie algebroids. AIP Conf. Proc. 1307, 7 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Batalin, I.A., Vilkovisky, G.A.: Relativistic S matrix of dynamical systems with Boson and Fermion constraints. Phys. Lett. B 69, 309 (1977)ADSCrossRefGoogle Scholar
  5. 5.
    Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. B 102, 27 (1981)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Batalin, I.A., Vilkovisky, G.A.: Quantization of gauge theories with linearly dependent generators. Phys. Rev. D 28, 2567 (1983). [Erratum-ibid. D 30, 508 (1984)]Google Scholar
  7. 7.
    Batalin, I.A., Bering, K., Damgaard, P.H.: Superfield quantization. Nucl. Phys. B 515, 455 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Batalin, I.A., Bering, K., Damgaard, P.H.: Superfield formulation of the phase space path integral. Phys. Lett. B 446, 175 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Blaom, A.D.: Geometric structures as deformed infinitesimal symmetries. Trans. Am. Math. Soc. 358, 3651 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bonelli, G., Zabzine, M.: From current algebras for p-branes to topological M-theory. JHEP 0509, 015 (2005)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Cattaneo, A., Felder, G.: On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 56, 163 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cattaneo, A., Felder, G.: Relative formality theorem and quantisation of coisotropic submanifolds. Adv. Math. 208(2), 521 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chatzistavrakidis, A., Deser, A., Jonke, L., Strobl, T.: Strings in singular space-times and their universal gauge theory. Ann Henri Poincaré 18(8), 2641 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University Press, New York (1964)Google Scholar
  16. 16.
    Dorfman, I Ya.: Dirac structures of integrable evolution equations. Phys. Lett. A 125, 240 (1987)Google Scholar
  17. 17.
    Fradkin, E.S., Vilkovisky, G.A.: Quantization of relativistic systems with constraints. Phys. Lett. B 55, 224 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grigoriev, M.A., Damgaard, P.H.: Superfield BRST charge and the master action. Phys. Lett. B 474, 323 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    Grigoriev, M.A.: Parent formulations, frame-like Lagrangians, and generalized auxiliary fields. JHEP 1212, 048 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Henneaux, M., Teitelboim, C.: Quantization of gauge systems, p. 520. Princeton, Princeton University Press (1992)zbMATHGoogle Scholar
  21. 21.
    Ikeda, N., Koizumi, K.: Current algebras and QP manifolds. Int. J. Geom. Meth. Mod. Phys. 10, 1350024 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ikeda, N.: Lectures on AKSZ Sigma Models for Physicists. Noncommutative Geometry and Physics 4, Workshop on Strings, Membranes, and Topological Field Theory: World scientific, Singapore, p. 79, (2017)Google Scholar
  23. 23.
    Ikeda, N., Strobl, T.: BV & BFV for the H-twisted Poisson sigma model and other surprises (in preparation)Google Scholar
  24. 24.
    Klimcik, C., Strobl, T.: WZW-poisson manifolds. J. Geom. Phys. 43, 341 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kotov, A., Schaller, P., Strobl, T.: Dirac sigma models. Commun. Math. Phys. 260, 455 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kotov, A., Salnikov, V., Strobl, T.: 2d gauge theories and generalized geometry. JHEP 08, 021 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kotov, A., Strobl, T.: Gauging without initial symmetry. J. Geom. Phys. 99, 184 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kotov, A., Strobl, T.: Geometry on Lie algebroids I: compatible geometric structures on the base. arXiv:1603.04490 [math.DG]
  29. 29.
    Kotov, A., Strobl, T.: Integration of quadratic Lie algebroids to Riemannian Cartan-Lie groupoids. Lett. Math. Phys. 108, 737–756 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Laurent-Gengoux, C., Lavau, S., Strobl, T.: The Lie infinity algebroid of a singular foliation (in preparation)Google Scholar
  31. 31.
    Mayer, C., Strobl, T.: Lie algebroid Yang mills with matter fields. J. Geom. Phys. 59, 1613 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rinehart, G.: Differential forms for general commutative algebras. Trans. Am. Math. Soc. 108, 195–222 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Roytenberg, D.: AKSZ-BV formalism and courant algebroid-induced topological field theories. Lett. Math. Phys. 79, 143 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Schaller, P., Strobl, T.: Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9, 3129 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Schwarz, A.: Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 155, 249 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    S̆evera, P., Weinstein, A.: Poisson geometry with a 3-form background. Prog. Theor. Phys. Suppl. 144, 145 (2001)Google Scholar
  37. 37.
    Vaintrob, A.: Lie algebroids and homological vector fields. Uspekhi Math. Nauk 52(2), 161–162 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zabzine, M.: Lectures on generalized complex geometry and supersymmetry. Arch. Math. 42, 119 (2006)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesRitsumeikan UniversityKusatsuJapan
  2. 2.Institut Camille JordanUniversité Claude Bernard Lyon 1Villeurbanne CedexFrance

Personalised recommendations