Inverse Scattering at High Energies for Classical Relativistic Particles in a Long-Range Electromagnetic Field
- 43 Downloads
Abstract
We define scattering data for the relativistic Newton equation in a static external electromagnetic field \({(-\nabla V, B)\in C^1(\mathbb{R}^n,\mathbb{R}^n)\times C^1(\mathbb{R}^n,A_n(\mathbb{R})), n\geq 2}\), that decays at infinity like \({r^{-\alpha-1}}\) for some \({\alpha\in (0,1]}\), where \({A_n(\mathbb{R})}\) is the space of \({n\times n}\) antisymmetric matrices. We prove, in particular, that the short-range part of \({(\nabla V,B)}\) can be reconstructed from the high-energy asymptotics of the scattering data provided that the long-range tail of \({(\nabla V,B)}\) is known. We consider also inverse scattering in other asymptotic regimes. This work generalizes [Jollivet (Asympt Anal 55:103–123, 2007)] where a short-range electromagnetic field was considered.
Keywords
Dirac Operator Inverse Scattering Born Approximation Radial Part Small Angle ScatteringReferences
- 1.Arians S.: Geometric approach to inverse scattering for the Schrödinger equation with magnetic and electric potentials. J. Math. Phys. 38(6), 2761–2773 (1997)zbMATHMathSciNetCrossRefADSGoogle Scholar
- 2.Cook J.M.: Banach algebras and asymptotic mechanics. 1967 Cargèse Lectures in Theoretical Physics: Application of Mathematics to Problems in Theoretical Physics (Cargèse, 1965), pp. 209–245. Gordon and Breach Science Publications, New York (1967)Google Scholar
- 3.Dereziński J.: Large time behavior of classical N-body systems. Commun. Math. Phys. 148, 503–520 (1992)zbMATHCrossRefADSGoogle Scholar
- 4.Derezinski J., Gérard C.: Scattering theory of classical and quantum N-particle systems. Springer, Berlin, Heidelberg (1997)zbMATHCrossRefGoogle Scholar
- 5.Dirac P.A.M.: Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133, 60–72 (1931)CrossRefADSGoogle Scholar
- 6.Einstein A.: Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik 4, 411–462 (1907)ADSGoogle Scholar
- 7.Enss V., Weder R.: The geometrical approach to multidimensional inverse scattering. J. Math. Phys. 36(8), 3902–3921 (1995)zbMATHMathSciNetCrossRefADSGoogle Scholar
- 8.Eskin, G., Ralston, J.: Inverse scattering problems for Schrödinger operators with magnetic and electric potentials. Inverse problems in wave propagation (Minneapolis, MN, 1995), IMA Volumes in Mathematics and its Applications, 90, pp. 147–166. Springer, New York (1997)Google Scholar
- 9.Faddeev L.D.: Uniqueness of solution of the inverse scattering problem. Vestnik. Leningrad. Univ. 11(7), 126–130 (1956)MathSciNetGoogle Scholar
- 10.Gel’fand, I.M., Gindikin, S.G., Graev, M.I.: Integral geometry in affine and projective spaces. Itogi Nauki i Tekhniki, Sovr. Prob. Mat. 16, 53–226 (1980) (Russian).Google Scholar
- 11.Hachem G.: The Faddeev formula in the inverse scattering for Dirac operators. Helv. Phys. Acta 72(5&6), 301–315 (1999)zbMATHMathSciNetGoogle Scholar
- 12.Henkin G.M., Novikov R.G.: A multidimensional inverse problem in quantum and acoustic scattering. Inverse Probl. 4, 103–121 (1988)zbMATHMathSciNetCrossRefADSGoogle Scholar
- 13.Herbst I.W.: Classical scattering with long range forces. Commun. Math. Phys. 35, 193–214 (1974)zbMATHMathSciNetCrossRefADSGoogle Scholar
- 14.Hunziker W.: The S-matrix in classical mechanics. Commun. Math. Phys. 8, 282–299 (1968)zbMATHMathSciNetCrossRefADSGoogle Scholar
- 15.Isozaki H.: Inverse scattering theory for Dirac operators. Ann. Inst. H. Poincaré Phys. Théor. 66(2), 237–270 (1997)zbMATHMathSciNetGoogle Scholar
- 16.Ito H.T.: High-energy behavior of the scattering amplitude for a Dirac operator. Publ. RIMS Kyoto Univ. 31, 1107–1133 (1995)zbMATHCrossRefGoogle Scholar
- 17.Jollivet A.: On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies. Asympt. Anal. 55(1&2), 103–123 (2007)zbMATHMathSciNetGoogle Scholar
- 18.Jollivet, A.: Inverse scattering at high energies for the multidimensional Newton equation in a long range potential. To appear in Asympt. Anal., preprint (2013). arXiv:1306.3638
- 19.Jollivet A.: On inverse scattering at fixed energy for the multidimensional Newton equation in a non-compactly supported field. J. Inverse Ill-Posed Probl. 21(6), 713–734 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
- 20.Jollivet, A.: On inverse scattering at high energies for the multidimensional relativistic Newton equation in a long range electromagnetic field. Preprint (2013) arXiv:1401.0182
- 21.Jung W.: Geometric approach to inverse scattering for Dirac equation. J. Math. Phys. 38(1), 39–48 (1997)zbMATHMathSciNetCrossRefADSGoogle Scholar
- 22.Loss M., Thaller B.: Scattering of particles by long-range magnetic fields. Ann. Phys. 176(1), 159–180 (1987)zbMATHMathSciNetCrossRefADSGoogle Scholar
- 23.Landau, L.D., Lifschitz, E.M.: The classical theory of fields. Pergamon Press, New York (1971)Google Scholar
- 24.Natterer, F.: The Mathematics of Computerized Tomography. B. G. Teubner, Stuttgart, Wiley, Chichester and New York (1986)Google Scholar
- 25.Nicoleau F.: A stationary approach to inverse scattering for Schrödinger operators with first order perturbation. Commun. Partial Differ. Equ. 22(3&4), 527–553 (1997)zbMATHMathSciNetGoogle Scholar
- 26.Novikov R.G.: Small angle scattering and X-ray transform in classical mechanics. Ark. Mat. 37, 141–169 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
- 27.Novikov R.G.: The \({\bar \partial}\) -approach to monochromatic inverse scattering in three dimensions. J. Geom. Anal 18(2), 612–631 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
- 28.Radon J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. K 1(69), 262–277 (1917)Google Scholar
- 29.Reed, M., Simon, B.: Methods of Modern Mathematical Physics. III. Scattering Theory, p. xv+463. Academic Press (Harcourt Brace Jovanovich, Publishers), New York, London (1979)Google Scholar
- 30.Shiota T.: An inverse problem for the wave equation with first order perturbation. Amer. J. Math. 107(1), 241–251 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
- 31.Simon B.: Wave operators for classical particle scattering. Commun. Math. Phys. 23, 37–48 (1971)zbMATHCrossRefADSGoogle Scholar
- 32.Yajima K.: Classical scattering for relativistic particles. J. Fac. Sci., Univ. Tokyo Sect. I A 29, 599–611 (1982)zbMATHMathSciNetGoogle Scholar