Annales Henri Poincaré

, Volume 16, Issue 11, pp 2535–2568 | Cite as

Generalised Quantum Waveguides

  • Stefan Haag
  • Jonas Lampart
  • Stefan TeufelEmail author


We study general quantum waveguides and establish explicit effective Hamiltonians for the Laplacian on these spaces. A conventional quantum waveguide is an \({\epsilon}\) -tubular neighbourhood of a curve in \({\mathbb{R}^3}\) and the object of interest is the Dirichlet Laplacian on this tube in the asymptotic limit \({\epsilon\ll1}\). We generalise this by considering fibre bundles M over a complete d-dimensional submanifold \({B\subset\mathbb{R}^{d+k}}\) with fibres diffeomorphic to \({F\subset\mathbb{R}^k}\), whose total space is embedded into an \({\epsilon}\) -neighbourhood of B. From this point of view, B takes the role of the curve and F that of the disc-shaped cross section of a conventional quantum waveguide. Our approach allows, among other things, for waveguides whose cross sections F are deformed along B and also the study of the Laplacian on the boundaries of such waveguides. By applying recent results on the adiabatic limit of Schrödinger operators on fibre bundles we show, in particular, that for small energies the dynamics and the spectrum of the Laplacian on M are reflected by the adiabatic approximation associated with the ground state band of the normal Laplacian. We give explicit formulas for the accordingly effective operator on L 2(B) in various scenarios, thereby improving and extending many of the known results on quantum waveguides and quantum layers in \({\mathbb{R}^3}\).


Orthonormal Frame Curvature Vector Tubular Neighbourhood Beltrami Operator Adiabatic Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bouchitté G., Mascarenhas M.L., Trabucho L.: On the curvature and torsion effects in one dimensional waveguides. ESAIM: Control Optim. Calc. of Var. 13, 793–808 (2007)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bishop R.L.: There is more than one way to frame a curve. Am. Math. Mon. 82, 246–251 (1975)zbMATHCrossRefGoogle Scholar
  3. 3.
    Carron G., Exner P., Krejčiřík D.: Topologically nontrivial quantum layers. J. Math. Phys. 45, 774–784 (2004)zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    da Costa R.: Constraints in quantum mechanics. Phys. Rev. A 25, 2893–2900 (1982)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Duclos P., Duclos P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7, 73–102 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Ekholm T., Kovařík H., Krejčiřík D.: A Hardy inequality in twisted waveguides. Arch. Ration. Mech. Anal. 188, 245–264 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Froese R., Herbst I.: Realizing holonomic constraints in classical and quantum mechanics. Commun. Math. Phys. 220, 489–535 (2001)zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Jensen H., Koppe H.: Quantum mechanics with constraints. Ann. Phys. 63, 586–591 (1971)CrossRefADSGoogle Scholar
  9. 9.
    Kleine R.: Discreteness conditions for the Laplacian on complete, non-compact Riemannian manifolds. Mathematische Zeitschrift 198, 127–141 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Krejčiřík, D.: Twisting versus bending in quantum waveguides. In: Analysis on Graphs and its Applications: Proceedings of the Symposium on Pure Mathematics, pp. 617–636. American Mathematical Society, Providence (2008)Google Scholar
  11. 11.
    Krejčiřík, D., Lu, Z.: Location of the essential spectrum in curved quantum layers. arXiv:1211.2541 (2012)
  12. 12.
    Krejčiřík, D., Raymond, N.: Magnetic effects in curved quantum waveguides. arXiv:1303.6844 (2013)
  13. 13.
    Krejčiřík, D., Raymond, N., Tušek, M.: The magnetic Laplacian in shrinking tubular neighbourhoods of hypersurfaces. arXiv:1303.4753 (2013)
  14. 14.
    Krejčiřík D., Šediváková H.: The effective Hamiltonian in curved quantum waveguides under mild regularity assumptions. Rev. Math. Phys. 24, 1250018 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lampart, J.: The adiabatic limit of Schrödinger operators on fibre bundles. PhD thesis, Eberhard Karls Universität Tübingen (2014)Google Scholar
  16. 16.
    Lampart, J., Teufel, S.: The adiabatic limit of Schrödinger operators on fibre bundles. arXiv:1402.0382 (2014)
  17. 17.
    Lampart, J., Teufel, S., Wachsmuth, J.: Effective Hamiltonians for thin Dirichlet tubes with varying cross-section. In: Mathematical Results in Quantum Physics: Proceedings of the QMath11 Conference, pp. 183–189. World Scientific Publishing Co., Singapore (2011)Google Scholar
  18. 18.
    Lin C., Lu Z.: On the discrete spectrum of generalized quantum tubes. Commun. Partial Differ. Equ. 31, 1529–1546 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Maraner P.: A complete perturbative expansion for quantum mechanics with constraints. J. Phys. A Math. Gen. 28, 2939–2951 (1995)zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Mitchell K.A.: Gauge fields and extrapotentials in constrained quantum systems. Phys. Rev. A 63, 042112 (2001)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    de Oliveira, G.: Quantum dynamics of a particle constrained to lie on a surface. arXiv:1310.6651 (2013)
  22. 22.
    de Oliveira C.R., Verri A.A.: On the spectrum and weakly effective operator for Dirichlet Laplacian in thin deformed tubes. J. Math. Anal. Appl. 381, 454–468 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Panati G., Spohn H., Teufel S.: Space-adiabatic pertubation theory. Adv. Theor. Math. Phys. 7, 145–204 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Schick, T.: Analysis on ∂-Manifolds of Bounded Geometry, Hodge-de Rham Isomorphism and L 2-Index Theorem. PhD thesis, Johannes Gutenberg Universität Mainz (1996)Google Scholar
  25. 25.
    Stockhofe J., Schmelcher P.: Curved quantum waveguides: Nonadiabatic couplings and gauge theoretical structure. Phys. Rev. A 89, 033630 (2014)CrossRefADSGoogle Scholar
  26. 26.
    Teufel S.: Adiabatic pertubation theory in quantum dynamics. Lecture Notes in Mathematics, vol. 1821. Springer, Berlin (2003)Google Scholar
  27. 27.
    Tolar J.: On a quantum mechanical d’Alembert principle. Lecture Notes in Physics, vol. 313. Springer, Berlin (1988)Google Scholar
  28. 28.
    Wachsmuth, J., Teufel, S.: Effective Hamiltonians for constrained quantum systems. Mem. Am. Math. Soc. 230 (2013)Google Scholar
  29. 29.
    Wittich, O.: A homogenization result for Laplacians on tubular neighbourhoods of closed Riemannian submanifolds. Habilitation Treatise, Eberhard Karls Universität Tübingen (2007)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Mathematisches InstitutEberhard Karls Universität TübingenTübingenGermany
  2. 2.CEREMADEUniverisité Paris-DauphineParis Cedex 16France

Personalised recommendations