Advertisement

Annales Henri Poincaré

, Volume 16, Issue 8, pp 1869–1897 | Cite as

The Multiscale Loop Vertex Expansion

  • Razvan GurauEmail author
  • Vincent Rivasseau
Article

Abstract

The loop vertex expansion (LVE) is a constructive technique which uses only canonical combinatorial tools and no space–time dependent lattices. It works for quantum field theories without renormalization. Renormalization requires scale analysis. In this paper, we provide an enlarged formalism which we call the multiscale loop vertex expansion (MLVE). We test it on what is probably the simplest quantum field theory which requires some kind of renormalization, namely a combinatorial model of the vector type with quartic interaction and a propagator which mimicks the power counting of \({\phi^4_2}\) . An ordinary LVE would fail to treat even this simplest superrenormalizable model, but we show how to perform the ultraviolet limit and prove its analyticity in the Borel summability domain of the model with the MLVE.

Keywords

Partition Function Gaussian Measure Feynman Graph Tensor Model Quartic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Glimm J., Jaffe A.M.: Quantum Physics. A Functional Integral Point of View. Springer, New York (1987)Google Scholar
  2. 2.
    Rivasseau V.: From Perturbative to Constructive Renormalization. Princeton University Press, Princeton (1991)CrossRefGoogle Scholar
  3. 3.
    Rivasseau, V., Wang, Z.: How to Resum Feynman Graphs. arXiv:1304.5913 [math-ph]
  4. 4.
    Brydges D., Kennedy T.: Mayer expansions and the Hamilton–Jacobi equation. J. Stat. Phys. 48, 19 (1987)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Abdesselam, A., Rivasseau, V.: Trees, forests and jungles: a botanical garden for cluster expansions. arXiv:hep-th/9409094
  6. 6.
    Rivasseau, V.: Constructive matrix theory. JHEP 0709, 008 (2007). arXiv:0706.1224
  7. 7.
    Rivasseau, V., Wang, Z.: Loop vertex expansion for \({\phi^{2k}}\) theory in zero dimension. J. Math. Phys. 51, 092304 (2010). arXiv:1003.1037
  8. 8.
    Magnen, J., Rivasseau, V.: Constructive \({\phi^4}\) field theory without tears. Annales Henri Poincaré 9, 403 (2008). [arXiv:0706.2457 [math-ph
  9. 9.
    Gurau, R., Ryan, J. P.: Colored tensor models—a review. SIGMA 8, 020 (2012). [arXiv:1109.4812 [hep-th
  10. 10.
    Rivasseau, V.: The Tensor Track, III. arXiv:1311.1461 [hep-th]
  11. 11.
    Di Francesco, P., Ginsparg, P.H., Zinn-Justin, J.: 2-d gravity and random matrices. Phys. Rep. 254, 1 (1995). arXiv:hep-th/9306153
  12. 12.
    Magnen, J., Noui, K., Rivasseau, V., Smerlak, M.: Scaling behavior of three-dimensional group field theory. Class. Quantum Gravity 26, 185012 (2009). arXiv:0906.5477
  13. 13.
    Gurau, R.: The 1/N expansion of tensor models beyond perturbation theory. arXiv:1304.2666
  14. 14.
    Ben Geloun, J., Rivasseau, V.: A renormalizable 4-dimensional tensor field theory. arXiv:1111.4997
  15. 15.
    Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of tensorial group field theories: Abelian U(1) models in four dimensions. arXiv:1207.6734
  16. 16.
    Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of an SU(2) tensorial group field theory in three dimensions. arXiv:1303.6772
  17. 17.
    Ben Geloun, J.: Renormalizable models in rank \({d \geq 2}\) tensorial group field theory. arXiv:1306.1201
  18. 18.
    Disertori, M., Gurau, R., Magnen, J., Rivasseau, V.: Vanishing of beta function of non commutative Phi**4(4) theory to all orders. Phys. Lett. B 649, 95 (2007). arXiv:hep-th/0612251
  19. 19.
    Ben Geloun, J., Samary, D. O.: 3D Tensor field theory: renormalization and one-loop β-functions. Annales Henri Poincaré 14, 1599 (2013). arXiv:1201.0176
  20. 20.
    Ben Geloun, J.: Two and four-loop β-functions of rank 4 renormalizable tensor field theories. Class. Quantum Gravity 29, 235011 (2012). arXiv:1205.5513
  21. 21.
    Simon, B.: The \({P(\Phi)_2}\) Euclidean (Quantum) Field Theory. Princeton Series in Physics, 392 P. Princeton University Press, Princeton (1974)Google Scholar
  22. 22.
    Nelson E.: A quartic interaction in two dimensions. In: Mathematical Theory of Elementary Particles, pp. 69–73. MIT Press, Cambridge (1965)Google Scholar
  23. 23.
    Abdesselam A., Rivasseau V.: Explicit fermionic tree expansions. Lett. Math. Phys. 44, 77–88 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Disertori M., Rivasseau V.: Continuous constructive fermionic renormalization. Annales Henri Poincaré 1, 1–57 (2000)MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Grosse, H., Wulkenhaar, R.: Renormalisation of phi**4 theory on noncommutative R**4 in the matrix base. Commun. Math. Phys. 256, 305 (2005). arXiv:hep-th/0401128
  26. 26.
    Grosse, H., Wulkenhaar, R.: Progress in solving a noncommutative quantum field theory in four dimensions. arXiv:0909.1389
  27. 27.
    Grosse, H., Wulkenhaar, R.: Self-dual noncommutative \({\phi^4}\) -theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. arXiv:1205.0465
  28. 28.
    Rivasseau, V., Tanasa, A.: Generalized constructive tree weights. arXiv:1310.2424 [math-ph]
  29. 29.
    Mayer J.E., Montroll E.: Molecular distributions. J. Chem. Phys. 9, 2–16 (1941)ADSCrossRefGoogle Scholar
  30. 30.
    Brydges D., Federbush P.: A new form of the Mayer expansion in classical statistical mechanics. J. Math. Phys. 19, 2064 (1978)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Brydges, D. : A short course on cluster expansions. In: Osterwalder, K., Stora, R. (eds.) Les Houches, Session XLIII, 1984, Elsevier, Amsterdam (1986)Google Scholar
  32. 32.
    Sokal A.D.: An improvement of Watson’s theorem on Borel summability. J. Math. Phys. 21, 261 (1980)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.CPHT-UMR 7644, CNRSÉcole PolytechniquePalaiseau CedexFrance
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.LPT-UMR 8627CNRSOrsay CedexFrance

Personalised recommendations