Advertisement

Annales Henri Poincaré

, Volume 16, Issue 9, pp 1969–2003 | Cite as

Resonances and Partial Delocalization on the Complete Graph

  • Michael AizenmanEmail author
  • Mira Shamis
  • Simone Warzel
Article

Abstract

Random operators may acquire extended states formed from a multitude of mutually resonating local quasi-modes. This mechanics is explored here in the context of the random Schrödinger operator on the complete graph. The operator exhibits local quasi-modes mixed through a single channel. While most of its spectrum consists of localized eigenfunctions, under appropriate conditions it includes also bands of states which are delocalized in the \({\ell^{1}}\)-though not in \({\ell^{2}}\)-sense, where the eigenvalues have the statistics of Šeba spectra. The analysis proceeds through some general observations on the scaling limits of random functions in the Herglotz–Pick class. The results are in agreement with a heuristic condition for the emergence of resonant delocalization, which is stated in terms of the tunneling amplitude among quasi-modes.

Keywords

Point Process Complete Graph Random Function Extended State Random Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aizenman M., Warzel S.: Extended states in a Lifshitz tail regime for random Schrödinger operators on trees. Phys. Rev. Lett. 106, 136804 (2011)CrossRefADSGoogle Scholar
  2. 2.
    Aizenman M., Warzel S.: Resonant delocalization for random Schrödinger operators on tree graphs. J. Eur. Math. Soc. 15, 1167–1222 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Aizenman, M., Warzel, S.: On the ubiquity of the Cauchy distribution in spectral problems (2013 preprint). arXiv:1312.7769
  4. 4.
    Albeverio S., Šeba P.: Wave chaos in quantum systems with point interactions. J. Stat. Phys. 64, 369–383 (1991)zbMATHCrossRefADSGoogle Scholar
  5. 5.
    Aleiner I.L., Matveev K.A.: Shifts of random energy levels by a local perturbation. Phys. Rev. Lett. 80, 814–817 (1998)zbMATHCrossRefADSGoogle Scholar
  6. 6.
    Berkolaiko G., Bogomolny E.B., Keating J.P.: Star graphs and Šeba billiards. J. Phys. A: Math. Gen. 34, 335–350 (2001)zbMATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Billingsley P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley-Interscience, New York (1999)CrossRefGoogle Scholar
  8. 8.
    Biroli, G., Ribeiro-Teixeira, A.C., Tarzia, M.: Difference between level statistics, ergodicity and localization transitions on the Bethe lattice. arXiv:1211.7334
  9. 9.
    Bogachev L.V., Molchanov S.A.: Mean-field models in the theory of random media. I. Theor. Math. Phys. 81, 1207–1214 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Bogomolny E., Leboeuf P., Schmit C.: Spectral statistics of chaotic systems with a point like scatterer. Phys. Rev. Lett. 85, 2486–2489 (2000)CrossRefADSGoogle Scholar
  11. 11.
    Bogomolny E., Gerland U., Schmit C.: Singular statistics. Phys. Rev. E 63, 036206 (2001)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Bogomolny E., Gerland U., Schmit C.: Nearest-neighbor distribution for singular billiards. Phys. Rev. E 65, 056214 (2002)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Bovier A.: Statistical Mechanics of Disordered Systems. Cambridge University Press, Cambridge (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Altshuler A., Altshuler B.L., Kravtsov V.E., Scardicchio A.: Anderson localization on the Bethe lattice: non-ergodicity of extended states. Phys. Rev. Lett. 113, (2014)CrossRefADSGoogle Scholar
  15. 15.
    Donoghue W.F.: The interpolation of Pick functions. Rocky Mt. J. Math. 4, 169–174 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Duren P.L.: Theory of H p spaces. Dover, New York (2000)Google Scholar
  17. 17.
    Dvoretzky A., Kiefer J., Wolfowitz J.: Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat. 27, 642–669 (1956)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Farhi E., Goldstone J., Gutmann S., Nagaj D.: How to make the quantum adiabatic algorithm fail. Int. J. Quantum Inf. 6, 503–516 (2008)zbMATHCrossRefGoogle Scholar
  19. 19.
    Forrester P.J., Rains E.M.: Interpretations of some parameter dependent generalizations of classical matrix ensembles. Probab. Theory Relat. Fields 131, 1–61 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Keating J.P., Marklof J., Winn B.: Value distribution of the eigenfunctions and spectral determinants of quantum star graphs. Commun. Math. Phys. 241, 421–452 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Monthus C., Garel T.: Anderson localization on the Cayley tree: multifractal statistics of the transmission at criticality and off criticality. J. Phys. A 44, 145001 (2011)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Ossipov A.: Anderson localization on a simplex. J. Phys. A: Math. Theor. 46, 105001 (2013)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Šeba P.: Wave chaos in singular quantum billiard. Phys. Rev Lett. 64, 1855–1858 (1990)zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Departments of Physics and MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Mathematics DepartmentPrinceton UniversityPrincetonUSA
  3. 3.Zentrum MathematikTU MünchenGarchingGermany

Personalised recommendations