On the Form Factors of Local Operators in the Bazhanov–Stroganov and Chiral Potts Models
- 79 Downloads
- 7 Citations
Abstract
We consider general cyclic representations of the six-vertex Yang–Baxter algebra and analyze the associated quantum integrable systems, the Bazhanov–Stroganov model and the corresponding chiral Potts model on finite size lattices. We first determine the propagator operator in terms of the chiral Potts transfer matrices and we compute the scalar product of separate states (including the transfer matrix eigenstates) as a single determinant formulae in the framework of Sklyanin’s quantum separation of variables. Then, we solve the quantum inverse problem and reconstruct the local operators in terms of the separate variables. We also determine a basis of operators whose form factors are characterized by a single determinant formulae. This implies that the form factors of any local operator are expressed as finite sums of determinants. Among these form factors written in determinant form are in particular those which will reproduce the chiral Potts order parameters in the thermodynamic limit. The results presented here are the generalization to the present models associated to the most general cyclic representations of the six-vertex Yang–Baxter algebra of those we derived for the lattice sine–Gordon model.
Keywords
Form Factor Transfer Matrix Local Operator Heisenberg Chain Determinant FormulaReferences
- 1.Grosjean, N., Maillet, J.M., Niccoli, G.: On the form factors of local operators in the lattice sine-Gordon model. J. Stat. Mech. P10006 (2012)Google Scholar
- 2.Sklyanin E.K., Faddeev L.D.: Quantum mechanical approach to completely integrable field theory models. Sov. Phys. Dokl. 23, 902 (1978)ADSGoogle Scholar
- 3.Faddeev L.D., Takhtajan L.A.: The quantum method of the inverse problem and the Heisenberg XYZ model. Russ. Math. Surv. 34(5), 11 (1979)CrossRefGoogle Scholar
- 4.Kulish P.P., Sklyanin E.K.: Quantum inverse scattering method and the Heisenberg ferromagnet. Phys. Lett. A 70, 461 (1979)ADSMathSciNetCrossRefGoogle Scholar
- 5.Faddeev L.D., Sklyanin E.K., Takhtajan L.A.: Quantum inverse problem method. I. Theor. Math. Phys. 40, 688 (1979)CrossRefGoogle Scholar
- 6.Faddeev L.D.: Quantum completely integrable models in field theory. Sov. Sci. Rev. C Math. Phys. 1, 107–155 (1980)zbMATHGoogle Scholar
- 7.Sklyanin E.K.: Quantum version of the method of inverse scattering problem. J. Sov. Math. 19, 1546–1596 (1982)zbMATHCrossRefGoogle Scholar
- 8.Kulish P.P., Sklyanin E.K.: Quantum spectral transform method recent developments. Lect. Notes Phys. 151, 61 (1982)ADSMathSciNetCrossRefGoogle Scholar
- 9.Fadeev, L.D.: Integrable models in 1 + 1 dimensional quantum field theory. In: Zuber, J.-B., Stora, R. (eds.) Recent Advances in Field Theory and Statistical Mechanics, Les Houches, Session XXXIX, pp. 561–608. North Holland Publishing Company, Amsterdam (1984). ISBN: 0444866752Google Scholar
- 10.Fadeev, L.D.: How Algebraic Bethe Ansatz works for integrable model. hep-th/9605187v1
- 11.Jimbo, M.: Yang-Baxter Equation in Integrable Systems. Advanced series in mathematical physics, vol. 10. Scientific, Singapore (1990). ISBN: 978-981-02-0120-3Google Scholar
- 12.Shastry, B.S., Jha, S.S., Singh, V.: Exactly solvable problems in condensed matter and relativistic field theory. Lecture Notes in Physics, vol. 242. Springer, Berlin, Heidelberg (1985)Google Scholar
- 13.Thacker H.B.: Exact integrability in quantum field theory and statistical systems. Rev. Mod. Phys. 53, 253 (1981)ADSMathSciNetCrossRefGoogle Scholar
- 14.Izergin A.G., Korepin V.E.: Lattice versions of quantum field theory models in two dimensions. Nucl. Phys. B 205, 401–413 (1982)ADSMathSciNetCrossRefGoogle Scholar
- 15.Sklyanin E.K.: The quantum Toda chain. Lect. Notes Phys. 226, 196–233 (1985)ADSMathSciNetCrossRefGoogle Scholar
- 16.Sklyanin, E.K.: Quantum inverse scattering method. Selected topics. In: Ge, M.-L. (ed.) Quantum Group and Quantum Integrable Systems: Nankai Lectures on Mathematical Physics. World Academic, Singapore (1992). ISBN: 978-9810207458. hep-th/9211111
- 17.Sklyanin E.K.: Separation of variables, new trends. Prog. Theor. Phys. Suppl. 118, 35–60 (1995)ADSMathSciNetCrossRefGoogle Scholar
- 18.Kitanine N., Maillet J.M., Terras V.: Form factors of the XXZ Heisenberg spin-1/2 finite chain. Nucl. Phys. B 554, 647 (1999)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 19.Heisenberg W.: Zur Theorie des Ferromagnetismus. Z. Phys. 49, 619 (1928)ADSzbMATHCrossRefGoogle Scholar
- 20.Bethe H.: Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Phys. 71, 205 (1931)ADSCrossRefGoogle Scholar
- 21.Hulthen L.: Uber das Austauschproblem eines Kristalls. Ark. Mat. Astron. Fys. 26, 1 (1938)Google Scholar
- 22.Orbach R.: Linear antiferromagnetic chain with anisotropic coupling. Phys. Rev. 112, 309 (1958)ADSCrossRefGoogle Scholar
- 23.Walker L.R.: Antiferromagnetic linear chain. Phys. Rev. 116, 1089 (1959)ADSCrossRefGoogle Scholar
- 24.Yang C.N., Yang C.P.: One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe’s hypothesis for ground state in a finite system. Phys. Rev. 150, 321 (1966)ADSCrossRefGoogle Scholar
- 25.Yang C.N., Yang P.C.: One-dimensional chain of anisotropic spin-spin interactions. II. Properties of the ground-state energy per lattice site for an infinite system. Phys. Rev. 150, 327 (1966)ADSCrossRefGoogle Scholar
- 26.Gaudin, M.: La Fonction d’onde de Bethe. Masson, Paris (1983). ISBN: 9782225796074Google Scholar
- 27.Lieb, E.H.,Mattis, D.C.: Mathematical Physics in One Dimension. Academic, New-York (1966). ISBN:978-0124487505Google Scholar
- 28.Maillet J.M., Terras V.: On the quantum inverse scattering problem. Nucl. Phys. B 575, 627 (2000)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 29.Izergin A.G., Kitanine N., Maillet J.M., Terras V.: Spontaneous magnetization of the XXZ Heisenberg spin-1/2 chain. Nucl. Phys. B 554, 679 (1999)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 30.Kitanine N., Maillet J.M., Terras V.: Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field. Nucl. Phys. B 567, 554 (2000)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 31.Kitanine N., Maillet J.M., Slavnov N.A., Terras V.: Spinspin correlation functions of the XXZ-1/2 Heisenberg chain in a magnetic field. Nucl. Phys. B 641, 487 (2002)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 32.Kitanine N., Maillet J.M., Slavnov N.A., Terras V.: Correlation functions of the XXZ spin-1/2 Heisenberg chain at the free fermion point from their multiple integral representations. Nucl. Phys. B 642, 433 (2002)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 33.Kitanine N., Maillet J.M., Slavnov N.A., Terras V.: Emptiness formation probability of the XXZ spin-1/2 Heisenberg chain at Δ = 1/2. J. Phys. A 35, L385 (2002)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 34.Kitanine N., Maillet , J. M., Slavnov N. A., Terras V.: Large distance asymptotic behaviour of the emptiness formation probability of the XXZ spin-1/2 Heisenberg chain. J. Phys. A 35, L753 (2002)ADSzbMATHCrossRefGoogle Scholar
- 35.Kitanine N., Maillet J.M., Slavnov N.A., Terras V.: Master equation for spinspin correlation functions of the XXZ chain. Nucl. Phys. B 712, 600 (2005)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 36.Kitanine N., Maillet J.M., Slavnov N.A., Terras V.: Dynamical correlation functions of the XXZ spin-1/2 chain. Nucl. Phys. B 729, 558 (2005)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 37.Kitanine N., Maillet J.M., Slavnov N.A., Terras V.: On the spin–spin correlation functions of the XXZ spin-1/2 infinite chain. J. Phys. A 38, 7441 (2005)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 38.Kitanine, N., Maillet, J.M., Slavnov, N.A., and Terras, V.: Exact results for the σz two-point function of the XXZ chain at Δ = 1/2. J. Stat. Mech. L09002 (2005)Google Scholar
- 39.Kitanine, N., Maillet, J.M., Slavnov, N.A., Terras, V.: On the algebraic Bethe Ansatz approach to the correlation functions of the XXZ spin-1/2 Heisenberg chain. In: Recent Progress in Solvable Lattice Models, RIMS Sciences Project Research 2004 on Method of Algebraic Analysis in Integrable Systems, RIMS, Kyoto, Kokyuroku, 1480, 14 (2006). hep-th/0505006
- 40.Kitanine, N., Kozlowski, K., Maillet, J.M., Slavnov, N.A., Terras, V.: On correlation functions of integrable models associated with the six-vertex R-matrix. J. Stat. Mech. P01022 (2007)Google Scholar
- 41.Kitanine N.: Correlation functions of the higher spin XXX chains. J. Phys. A Math. Gen. 34, 8151 (2001)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 42.Castro-Alvaredo O.A., Maillet J.M.: Form factors of integrable Heisenberg (higher) spin chains. J. Phys. A 40, 7451 (2007)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 43.Kitanine, N., Kozlowski, K.K., Maillet, J.M., Niccoli, G., Slavnov, N.A., Terras, V.: Correlation functions of the open XXZ chain: I. J. Stat. Mech. P10009 (2007)Google Scholar
- 44.Kozlowski, K.K.: On the emptiness formation probability of the open XXZ spin-1/2 chain. J. Stat. Mech. P02006 (2008)Google Scholar
- 45.Kitanine, N., Kozlowski, K.K., Maillet, J.M., Niccoli, G., Slavnov, N.A., Terras, V.: Correlation functions of the open XXZ chain: II. J. Stat. Mech. P07010 (2008)Google Scholar
- 46.Sklyanin E.K.: Boundary conditions for integrable quantum systems. J. Phys. A Math. Gen. 21, 2375 (1988)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 47.Cherednik I.V.: Factorizing particles on a half-line and root systems. Theor. Math. Phys. 61, 977 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
- 48.Kulish P.P., Sklyanin E.K.: The general Uq(sl(2)) invariant XXZ integrable quantum spin chain. J. Phys. A Math. Gen. 24, L435 (1991)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 49.Mezincescu L., Nepomechie R.: Integrability of open spin chains with quantum algebra symmetry. Int. J. Mod. Phys. A 6, 5231 (1991)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 50.Kulish P.P., Sklyanin E.K.: Algebraic structures related to reflection equations. J. Phys. A Math. Gen. 25, 5963 (1992)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 51.Ghoshal S., Zamolodchikov A.: Boundary S matrix and boundary state in two-dimensional integrable quantum field theory. Int. J. Mod. Phys. A 9, 3841 (1994)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 52.Ghoshal S., Zamolodchikov A.: Errata: boundary S matrix and boundary state in two-dimensional integrable quantum field theory. Int. J. Mod. Phys. A 9, 4353 (1994)ADSMathSciNetCrossRefGoogle Scholar
- 53.Tarasov V.: Cyclic monodromy matrices for the R matrix of the six vertex model and the chiral Potts model with fixed spin boundary conditions. Int. J. Mod. Phys. A 07, 963 (1992)ADSMathSciNetCrossRefGoogle Scholar
- 54.Niccoli, G., Teschner, J.: The sine–Gordon model revisited: I. J. Stat. Mech. P09014 (2010)Google Scholar
- 55.Niccoli G.: Reconstruction of Baxter Q-operator from Sklyanin SOV for cyclic representations of integrable quantum models. Nucl. Phys. B 835, 263 (2010)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 56.Niccoli G.: Completeness of Bethe ansatz by Sklyanin SOV for cyclic representations of integrable quantum models. JHEP 03, 123 (2011)ADSMathSciNetCrossRefGoogle Scholar
- 57.Bazhanov V.V., Stroganov Yu.G.: Chiral Potts model as a descendant of the six-vertex model. J. Stat. Phys. 59, 799 (1990)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 58.Baxter R.J., Bazhanov V.V., Perk J.H.H.: Functional relations for the transfer matrices of the chiral Potts model. Int. J. Mod. Phys. B 4, 803 (1990)ADSMathSciNetCrossRefGoogle Scholar
- 59.Baxter R.J.: Transfer matrix functional relations for the generalized τ 2 (t q) model. J. Stat. Phys. 117, 1 (2004)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 60.Albertini, G., McCoy, B.M., Perk, J.H.H.: Eigenvalue spectrum of the super-integrable chiral Potts model. In: Jimbo, M., Miwa, T., Tsuchiya, A. (eds.) Integrable Systems in Quantum Field Theory and Statistical Mechanics (Adv. Stud. Pure Math. vol. 19), pp. 1–55. Kinokuniya, Tokyo (1989). ISBN: 9780123853424Google Scholar
- 61.Albertini G., McCoy B.M., Perk J.H.H.: Commensurate-incommensurate transition in the ground state of the superintegrable chiral Potts model. Phys. Lett. A 135, 159 (1989)ADSMathSciNetCrossRefGoogle Scholar
- 62.Albertini G., McCoy B.M., Perk J.H.H.: Level crossing transitions and the massless phases of the superintegrable chiral Potts chain. Phys. Lett. A 139, 204 (1989)ADSMathSciNetCrossRefGoogle Scholar
- 63.Au-Yang H., McCoy B.M., Perk J.H.H., Tang S., Yan M.-L.: Commuting transfer matrices in the chiral Potts models: solutions of star-triangle equations with genus > 1. Phys. Lett. A 123, 219 (1987)ADSMathSciNetCrossRefGoogle Scholar
- 64.Baxter, R.J., Perk, J.H.H., Au-Yang, H.: New solutions of the star-triangle relations for the chiral-Potts model. Phys. Lett. A. 128, 138 (1988)Google Scholar
- 65.Au-Yang, H., Perk, J.H.H.: Onsager’s star triangle equation: master key to integrability. In: Jimbo, M., Miwa, T., Tsuchiya, A. (eds.) Integrable Systems in Quantum Field Theory and Statistical Mechanics (Adv. Stud. Pure Math. vol. 19), pp. 57-94. Kinokuniya, Tokyo (1989). ISBN: 9780123853424Google Scholar
- 66.von Gehlen, G., Rittenberg, V.: Z n-symmetric quantum chains with an infinite set of conserved charges and Z n zero modes. Nucl. Phys. B 257, 351 (1985)Google Scholar
- 67.Perk, J.H.H.: Star-triangle equations, quantum Lax pairs, and higher genus curves. In: Gunning, R.C., Ehrenpreis, L. (eds.) Proceedings of 1987 Summer Research Institute on Theta Functions (Proc. Symp. Pure Math. vol. 49), pp. 341–354. American Mathematical Society, Providence (1989). ISBN: 9780821814857Google Scholar
- 68.Baxter R.J.: The superintegrable chiral potts model. Phys. Lett. A 133, 185 (1989)ADSMathSciNetCrossRefGoogle Scholar
- 69.Baxter R.J.: Superintegrable chiral Potts model: thermodynamic properties, an inverse model, and a simple associated Hamiltonian. J. Stat. Phys. 57, 1 (1989)ADSMathSciNetCrossRefGoogle Scholar
- 70.Baxter R.J., Bazhanov V.V., Perk J.H.H.: Functional relations for transfer matrices of the chiral Potts model. Int. J. Mod. Phys. B 4, 803870 (1990)MathSciNetCrossRefGoogle Scholar
- 71.Bazhanov V.V., Bobenko A., Reshetikhin N.: Quantum discrete sine-Gordon model at roots of 1: integrable quantum system on the integrable classical background. Commun. Math. Phys. 175, 377 (1996)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 72.Bazhanov, V.V.: Chiral Potts model and the discrete sine–Gordon model at roots of unity. Adv. Stud. Pure Math. 61, 91–123 (2011)Google Scholar
- 73.Bazhanov V.V., Sergeev S.: A master solution of the quantum Yang–Baxter equation and classical discrete integrable equations. Adv. Theor. Math. Phys. 16, 65–95 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
- 74.McCoy B.M., Perk J.H.H., Tang S., Sah C.H.: Commuting transfer matrices for the four-state self-dual chiral Potts model with a genus-three uniformizing fermat curve. Phys. Lett. A 125, 9 (1987)ADSMathSciNetCrossRefGoogle Scholar
- 75.Au-Yang, H., McCoy, B.M., Perk, J.H.H., Tang, S.: Solvable models in statistical mechanics and Riemann surfaces of genus greater than one. In: Kashiwara, M., Kawai, T. (eds.) Papers Dedicated to Professor Mikio Sato on the Occasion of his Sixtieth Birthday, vol. I, pp. 29–40. Academic, San Diego (1988). ISBN: 9780124004658Google Scholar
- 76.Tarasov V.O.: Transfer matrix of the superintegrable chiral Potts model. Bethe ansatz spectrum. Phys. Lett. A 147, 487 (1990)ADSMathSciNetCrossRefGoogle Scholar
- 77.Kulish P.P., Reshetikhin N.Y., Sklyanin E.K.: Yang–Baxter equation and representation theory: I. Lett. Math. Phys. 5, 393 (1981)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 78.Kirillov A.N., Reshetikhin N.Y.: Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum. J. Phys. A Math. Gen. 20, 1565 (1987)ADSMathSciNetCrossRefGoogle Scholar
- 79.Au-Yang H., Perk J.H.H.: Eigenvectors in the superintegrable model I: \({{\mathfrak{sl}}_2}\) generators. J. Phys. A Math. Theor. 41, 275201 (2008)ADSMathSciNetCrossRefGoogle Scholar
- 80.Au-Yang H., Perk J.H.H.: Eigenvectors in the superintegrable model II: ground-state sector. J. Phys. A Math. Theor. 42, 375208 (2009)MathSciNetCrossRefGoogle Scholar
- 81.Nishino A., Deguchi T.: An algebraic derivation of the eigenspaces associated with an Ising-like spectrum of the superintegrable chiral Potts model. J. Stat. Phys. 133, 587 (2008)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 82.Roan, S.S.: Eigenvectors of an arbitrary Onsager sector in super-integrable τ 2 model and chiral Potts model (2010). arXiv:1003.3621
- 83.Onsager L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 84.Fabricius, K., McCoy, B.M.: Evaluation parameters and Bethe roots for the six-vertex model at roots of unity. In: Kashiwara, M., Miwa, T. (eds.) MathPhys Odyssey (Progress in Math. Phys. vol. 23), p. 119. Birkhäuser, Basel (2001)Google Scholar
- 85.Davies B.: Onsager’s algebra and superintegrability. J. Phys. A Math. Gen. 23, 2245 (1990)ADSzbMATHCrossRefGoogle Scholar
- 86.Date E., Roan S.S.: The algebraic structure of the Onsager algebra. Czechoslov. J. Phys. 50, 37 (2000)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 87.Roan, S.S.: The Onsager algebra symmetry of T (j)-matrices in the superintegrable chiral Potts model. J. Stat. Mech. P09007 (2005)Google Scholar
- 88.Nishino A., Deguchi T.: The L(sl2) symmetry of the BazhanovStroganov model associated with the superintegrable chiral Potts model. Phys. Lett. A 356, 366 (2006)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 89.Roan S.S.: Fusion operators in the generalized T (2)-model and root-of-unity symmetry of the XXZ spin chain of higher spin. J. Phys. A Math. Theor. 40, 1481 (2007)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 90.Roan, S.S.: Duality and symmetry in chiral Potts model. J. Stat. Mech. P08012 (2009)Google Scholar
- 91.Albertini G., McCoy B.M., Perk J.H.H., Tang S.: Excitation spectrum and order parameter for the integrable N-state chiral Potts model. Nucl. Phys. B 314, 741 (1989)ADSMathSciNetCrossRefGoogle Scholar
- 92.Baxter R.J.: Derivation of the order parameter of the chiral Potts model. Phys. Rev. Lett. 94, 130602 (2005)ADSCrossRefGoogle Scholar
- 93.Baxter R.J.: The order parameter of the chiral Potts model. J. Stat. Phys. 120, 1 (2005)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 94.Jimbo M., Miwa T., Nakayashiki A.: Difference equations for the correlation functions of the eight-vertex model. J. Phys. A Math. Gen. 26, 2199 (1993)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 95.Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, London (1982). ISBN: 9780120831821Google Scholar
- 96.Baxter R.J.: Corner transfer matrices in statistical mechanics. J. Phys. A Math. Theor. 40, 12577 (2007)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 97.Baxter R.J.: Algebraic reduction of the Ising model. J. Stat. Phys. 132, 959 (2008)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 98.Baxter R.J.: Some remarks on a generalization of the superintegrable chiral Potts model. J. Stat. Phys. 137, 798 (2009)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 99.Au-Yang H., Perk J.H.H.: Identities in the superintegrable chiral Potts model. J. Phys. A Math. Theor. 43, 025203 (2010)ADSMathSciNetCrossRefGoogle Scholar
- 100.Au-Yang H., Perk J.H.H.: Quantum loop subalgebra and eigenvectors of the superintegrable chiral Potts transfer matrices. J. Phys. A Math. Theor. 44, 025205 (2011)ADSMathSciNetCrossRefGoogle Scholar
- 101.Au-Yang, H., Perk, J.H.H.: Super-integrable chiral Potts model: proof of the conjecture for the coefficients of the generating function G(t,u). arXiv:1108.4713v1
- 102.Baxter R.J.: A conjecture for the superintegrable chiral Potts model. J. Stat. Phys. 132, 983 (2008)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 103.Iorgov, N., Pakuliak, S., Shadura, V., Tykhyy, Yu., von Gehlen, G.: Spin operator matrix elements in the superintegrable chiral Potts quantum chain. J. Stat. Phys. 139, 743 (2009)Google Scholar
- 104.Bugrij A., Lisovyy O.: Correlation function of the two-dimensional Ising model on a finite lattice: II. Theor. Math. Phys. 140, 987 (2004)CrossRefGoogle Scholar
- 105.Iorgov N.: Form factors of the finite quantum XY-chain. J. Phys. A Math. Theor. 44, 335005 (2011)CrossRefGoogle Scholar
- 106.Baxter R.J.: Spontaneous magnetization of the superintegrable chiral Potts model: calculation of the determinant D PQ. J. Phys. A Math. Theor. 43, 145002 (2010)ADSMathSciNetCrossRefGoogle Scholar
- 107.Baxter, R.J.: Proof of the determinantal form of the spontaneous magnetization of the superintegrable chiral Potts model. ANZIAM J. 51, 309 (2010)Google Scholar
- 108.Dasmahapatra S., Kedem R., McCoy B.: Spectrum and completeness of the three-state superintegrable chiral Potts model. Nucl. Phys. B 396, 506 (1993)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 109.Albertini, G., Dasmahapatra, S., McCoy, B.: Spectrum and completeness of the intergable 3-state Potts model: a finite size study. Int. J. Mod. Phys. A 7(supp01a), 1 (1992)Google Scholar
- 110.Fateev V.A., Zamolodchikov A.B.: Self-dual solutions of the star-triangle relations in Z N-models. Phys. Lett. A 92, 37 (1982)ADSMathSciNetCrossRefGoogle Scholar
- 111.Fabricius K., McCoy B.: Bethe’s equation is incomplete for the XXZ model at roots of unity. J. Stat. Phys. 103, 647 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
- 112.Nepomechie R.I., Ravanini F.: Completeness of the Bethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms. J. Phys. A 36, 11391 (2003)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 113.von Gehlen, G., Iorgov, N., Pakuliak, S., Shadura, V.: The Baxter–Bazhanov–Stroganov model: separation of variables and the Baxter equation. J. Phys. A Math. Gen. 39, 7257 (2006)Google Scholar
- 114.Iorgov, N.: Eigenvectors of open Bazhanov–Stroganov quantum chain. SIGMA 2, 019 (2006)Google Scholar
- 115.von Gehlen G., Iorgov N., Pakuliak S., Shadura V., Tykhyy Yu: Form-factors in the Baxter–Bazhanov–Stroganov model I: norms and matrix elements. J. Phys. A Math. Theor. 40, 14117 (2007)ADSzbMATHCrossRefGoogle Scholar
- 116.von Gehlen, G., Iorgov, N., Pakuliak, S., Shadura, V., Tykhyy, Yu: Form factors in the Baxter–Bazhanov–Stroganov model II: Ising model on the finite lattice. J. Phys. A Math. Theor. 41, 095003 (2008)Google Scholar
- 117.von Gehlen, G., Iorgov, N., Pakuliak, S., Shadura, V.: Factorized finite-size Ising model spin matrix elements from separation of variables. J. Phys. A Math. Theor. 42, 304026 (2009)Google Scholar
- 118.Grosjean, N., Niccoli, G.: The τ2-model and the chiral Potts model revisited: completeness of Bethe equations from Sklyanin’s SOV method. J. Stat. Mech. P11005 (2012)Google Scholar
- 119.Alcaraz F.C., Barber M.N., Batchelor M.T., Baxter R.J., Quispel G.R.W.: Surface exponents of the quantum XXZ, Ashkin–Teller and Potts models. J. Phys. A 20, 6397 (1987)ADSMathSciNetCrossRefGoogle Scholar
- 120.Reshetikhin N.Y.: A method of functional equations in the theory of exactly solvable quantum systems. Lett. Math. Phys. 7, 205 (1983)ADSMathSciNetCrossRefGoogle Scholar
- 121.Reshetikhin N.Y.: The functional equation method in the theory of exactly soluble quantum systems. JETP 57, 691 (1983)MathSciNetGoogle Scholar
- 122.Mukhin E., Tarasov V., Varchenko A.: Bethe algebra of homogeneous XXX Heisenberg model has simple spectrum. Commun. Math. Phys. 288, 1 (2009)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 123.Orlando, D., Reffert, S., Reshetikhin, N.: On domain wall boundary conditions for the XXZ spin Hamiltonian. arXiv:0912.0348
- 124.Korff C.: Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra. Commun. Math. Phys. 318, 173 (2013)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 125.Izergin, A.G., Korepin, V.E.: A lattice model related to the nonlinear Schroedinger equation. Dokl. Akad. Nauk 259, 76 (1981). arXiv:0910.0295
- 126.Slavnov N.A.: Calculation of scalar products of wave functions and form factors in the framework of the alcebraic Bethe ansatz. Theor. Math. Phys. 79, 502 (1989)MathSciNetCrossRefGoogle Scholar
- 127.Gutzwiller M.: The quantum mechanical Toda lattice, II. Ann. Phys. 133, 304 (1981)ADSMathSciNetCrossRefGoogle Scholar
- 128.Pasquier V., Gaudin M.: The periodic Toda chain and a matrix generalization of the Bessel function recursion relations. J. Phys. A 25, 5243 (1992)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 129.Kharchev S., Lebedev D.: Integral representation for the eigenfunctions of a quantum periodic Toda chain. Lett. Math. Phys. 50, 53 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
- 130.Smirnov F.: Structure of matrix elements in the quantum Toda chain. J. Phys. A Math. Gen. 31, 8953 (1998)ADSzbMATHCrossRefGoogle Scholar
- 131.Bytsko A., Teschner J.: Quantization of models with non-compact quantum group symmetry: modular XXZ magnet and lattice sine–Gordon model. J. Phys. A 39, 12927 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
- 132.Faddeev L.D., Kashaev R.M.: Quantum dilogarithm. Mod. Phys. Lett. A 9, 427 (1994)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 133.Faddeev L.D.: Discrete Heisenberg–Weyl Group and modular group. Lett. Math. Phys. 34, 249 (1995)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 134.Ruijsenaars S.N.M.: First order analytic difference equations and integrable quantum systems. J. Math. Phys. 38, 1069 (1997)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 135.Woronowicz S.L.: Quantum exponential function. Rev. Math. Phys. 12, 873 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
- 136.Ponsot B., Teschner J.: ClebschGordan and RacahWigner coefficients for a continuous series of representations of U q (sl(2,R)). Commun. Math. Phys. 224, 613 (2001)ADSMathSciNetCrossRefGoogle Scholar
- 137.Kashaev R.M.: The non-compact quantum dilogarithm and the Baxter equations. J. Stat. Phys. 102, 923 (2001)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 138.Kashaev, R.M.: The quantum dilogarithm and Dehn twists in quantum Teichmüller theory. In: Pakuliak, S., von Gehlen, G. (eds.) Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Nato Science Series II: (Closed), vol. 35, pp. 211–221. Kluwer, Dordrecht (2001). ISBN: 978-0-7923-7183-0Google Scholar
- 139.Bytsko A., Teschner J.: R-operator, co-product and Haar-measure for the modular double of U q(sl(2,R)). Commun. Math. Phys. 240, 171 (2003)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 140.Teschner J.: Liouville theory revisited. Class. Quantum Gravity 18, R153 (2001)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 141.Teschner, J.: A lecture on the Liouville vertex operators. Int. J. Mod. Phys. A 19(supp02), 436 (2004)Google Scholar
- 142.Volkov A.Yu.: Noncommutative hypergeometry. Commun. Math. Phys. 258, 257 (2005)ADSzbMATHCrossRefGoogle Scholar
- 143.Tarasov, V.O., Takhtadzhyan, I.A., Faddeev, L.D.: Local Hamiltonians for integrable quantum models on a lattice. Theor. Math. Phys. 57(2), 1059 (1983)Google Scholar
- 144.Oota T.: Quantum projectors and local operators in lattice integrable models. J. Phys. A Math. Gen. 37, 441 (2004)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 145.Kuznetsov, V.B.: Inverse Problem for sl(2) Lattices, Symmetry and Perturbation Theory, pp. 136–152. World Scientific (2002). arXiv:nlin/0207025
- 146.Caux J.-S., Maillet J.-M.: Computation of dynamical correlation functions of Heisenberg chains in a magnetic field. Phys. Rev. Lett. 95, 077201 (2005)ADSCrossRefGoogle Scholar
- 147.Caux, J.-S., Hagemans, R., Maillet, J.-M.: Computation of dynamical correlation functions of Heisenberg chains: the gapless anisotropic regime. J. Stat. Mech. P09003 (2005)Google Scholar
- 148.Pereira R.G., Sirker J., Caux J.-S., Hagemans R., Maillet J.M., White S.R., Affleck I.: Dynamical spin structure factor for the anisotropic spin-1/2 Heisenberg chain. Phys. Rev. Lett. 96, 257202 (2006)ADSCrossRefGoogle Scholar
- 149.Hagemans, R., Caux, J.-S., Maillet, J. M.: How to calculate correlation functions of Heisenberg chains. In: Proceedings of the “Tenth Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors”, Salerno, 2005, vol. 846, p. 245. AIP Conference Proceedings (2006)Google Scholar
- 150.Pereira, R. G., Sirker, J., Caux, J.-S., Hagemans, R., Maillet, J.M., White, S.R., Affleck, I.: Dynamical structure factor at small q for the XXZ spin-1/2 chain. J. Stat. Mech. P08022 (2007)Google Scholar
- 151.Sirker, J., Pereira, R.G., Caux, J.-S., Hagemans, R., Maillet, J.M., White, S.R., Affleck, I.: Boson decay and the dynamical structure factor for the XXZ chain at finite magnetic field. Proc. SCES’07 Houst. Phys. B 403, 1520 (2008)Google Scholar
- 152.Caux, J.S., Calabrese, P., Slavnov, N.A.: One-particle dynamical correlations in the one-dimensional Bose gas. J. Stat. Mech. P01008 (2007)Google Scholar
- 153.Bloch F.: On the magnetic scattering of neutrons. Phys. Rev. 50, 259 (1936)ADSCrossRefGoogle Scholar
- 154.Schwinger J.S.: On the magnetic scattering of neutrons. Phys. Rev. 51, 544 (1937)ADSzbMATHCrossRefGoogle Scholar
- 155.Halpern O., Johnson M.H.: On the magnetic scattering of neutrons. Phys. Rev. 55, 898 (1938)ADSCrossRefGoogle Scholar
- 156.Van Hove L.: Correlations in space and time and born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249 (1954)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 157.Van Hove L.: Time-dependent correlations between spins and neutron scattering in ferromagnetic crystals. Phys. Rev. 95, 1374 (1954)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 158.Marshall, W., Lovesey, S.W.: Theory of Thermal Neutron Scattering. Clarenton Press, Oxford (1971). ISBN: 9780198512547Google Scholar
- 159.Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, New York (1975). ISBN: 978-0471046004Google Scholar
- 160.Kitanine N., Kozlowski K.K., Maillet J.M., Slavnov N.A., Terras V.: On the thermodynamic limit of form factors in the massless XXZ Heisenberg chain. J. Math. Phys. 50, 095209 (2009)ADSMathSciNetCrossRefGoogle Scholar
- 161.Kozlowski K.K.: Fine structure of the asymptotic expansion of cyclic integrals. J. Math. Phys. 50, 095205 (2009)ADSMathSciNetCrossRefGoogle Scholar
- 162.Kitanine, N., Kozlowski, K.K., Maillet, J.M., Slavnov, N.A., Terras, V.: The thermodynamic limit of particle hole form factors in the massless XXZ Heisenberg chain. J. Stat. Mech. P05028 (2011)Google Scholar
- 163.Kozlowski, K.K., Maillet, J.M., Slavnov, N.A.: Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas. J. Stat. Mech. P03018 (2011)Google Scholar
- 164.Kozlowski, K.K., Maillet, J.M., Slavnov, N.A.: Correlation functions for one-dimensional bosons at low temperature. J. Stat. Mech. P03019 (2011)Google Scholar
- 165.Kozlowski, K.K.: Low-T Asymptotic Expansion of the Solution to the Yang–Yang Equation. Lett. Math. Phys. (2013). doi: 10.1007/s11005-013-0654-1
- 166.Kozlowski K.K.: On form factors of the conjugated field in the nonlinear Schrödinger model. J. Math. Phys. 52, 083302 (2011)ADSMathSciNetCrossRefGoogle Scholar
- 167.Kozlowski, K.K.: Large-distance and long-time asymptotic behavior of the reduced density matrix in the non-linear Schrödinger model. arXiv:1101.1626
- 168.Kozlowski, K.K., Terras, V.: Long-time and large-distance asymptotic behavior of the currentcurrent correlators in the non-linear Schrdinger model. J. Stat. Mech. P09013 (2011)Google Scholar
- 169.Kitanine, N., Kozlowski, K.K., Maillet, J.M., Slavnov, N.A., Terras, V.: A form factor approach to the asymptotic behavior of correlation functions in critical models. J. Stat. Mech. P12010 (2011)Google Scholar
- 170.Kozlowski, K.K., Pozsgay, B.: Surface free energy of the open XXZ spin-1/2 chain. J. Stat. Mech. P05021 (2012)Google Scholar
- 171.Kitanine N., Kozlowski K.K., Maillet J.M., Slavnov N.A., Terras V.: Riemann–Hilbert approach to a generalised sine kernel and applications. Commun. Math. Phys. 291, 691 (2009)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 172.Kitanine, N., Kozlowski, K.K., Maillet, J.M., Slavnov, N.A., Terras, V.: Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions. J. Stat. Mech. P04003 (2009)Google Scholar
- 173.Kozlowski K.K.: Riemann–Hilbert approach to the time-dependent generalized sine kernel. Adv. Theor. Math. Phys. 15, 1655 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
- 174.Babelon O., Bernard D., Smirnov F.: Quantization of solitons and the restricted sine–Gordon model. Commun. Math. Phys. 182, 319 (1996)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 175.Babelon O., Bernard D., Smirnov F.: Null-vectors in integrable field theory. Commun. Math. Phys. 186, 601 (1997)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 176.Babelon O.: On the quantum inverse problem for the closed Toda chain. J. Phys. A 37, 303 (2004)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 177.Sklyanin, E.: Bispectrality for the quantum open Toda chain. J. Phys. A Math. Theor. 46, 382001 (2013)Google Scholar
- 178.Kozlowski, K.K.: Aspects of the inverse problem for the Toda chain. arXiv:1307.4052
- 179.Smirnov, F.: Quasi-classical study of form factors in finite volume. arXiv:hep-th/9802132
- 180.Niccoli G.: Form factors and complete spectrum of XXX antiperiodic higher spin chains by quantum separation of variables. Nucl. Phys. B 870, 397 (2013)ADSzbMATHMathSciNetCrossRefGoogle Scholar
- 181.Niccoli G.: Form factors and complete spectrum of XXX antiperiodic higher spin chains by quantum separation of variables. J. Math. Phys. 54, 053516 (2013)ADSMathSciNetCrossRefGoogle Scholar
- 182.Niccoli, G.: Non-diagonal open spin-1/2 XXZ quantum chains by separation of variables: complete spectrum and matrix elements of some quasi-local operators. J. Stat. Mech. P10025 (2012)Google Scholar
- 183.Faldella, S., Kitanine, N., Niccoli, G.: The complete spectrum and scalar products for the open spin-1/2 XXZ quantum chains with non-diagonal boundary terms. J. Stat. Mech. P01011 (2014)Google Scholar
- 184.Faldella, S., Niccoli, G.: SOV approach for integrable quantum models associated with general representations on spin-1/2 chains of the 8-vertex reflection algebra. J. Phys. A: Math. Theor. 47, 115202 (2014)Google Scholar
- 185.Niccoli G.: An antiperiodic dynamical six-vertex model: I. Complete spectrum by SOV, matrix elements of the identity on separate states and connections to the periodic eight-vertex model. J. Phys. A Math. Theor. 46, 075003 (2013)ADSMathSciNetCrossRefGoogle Scholar