The Coefficient Problem and Multifractality of Whole-Plane SLE & LLE
- 142 Downloads
- 2 Citations
Abstract
Karl Löwner (later known as Charles Loewner) introduced his famous differential equation in 1923 to solve the Bieberbach conjecture for series expansion coefficients of univalent analytic functions at level n = 3. His method was revived in 1999 by Oded Schramm when he introduced the Stochastic Loewner Evolution (SLE), a conformally invariant process which made it possible to prove many predictions from conformal field theory for critical planar models in statistical mechanics. The aim of this paper is to revisit the Bieberbach conjecture in the framework of SLE processes and, more generally, Lévy processes. The study of their unbounded whole-plane versions leads to a discrete series of exact results for the expectations of coefficients and their variances, and, more generally, for the derivative moments of some prescribed order p. These results are generalized to the “oddified” or m-fold conformal maps of whole-plane SLEs or Lévy–Loewner Evolutions. We also study the (average) integral means multifractal spectra of these unbounded whole-plane SLE curves. We prove the existence of a phase transition at a moment order p = p *(κ) > 0, at which one goes from the bulk SLE κ average integral means spectrum, as predicted by the first author (Duplantier Phys. Rev. Lett. 84:1363–1367, 2000) and established by Beliaev and Smirnov (Commun Math Phys 290:577–595, 2009) and valid for p ≤ p *(κ), to a new integral means spectrum for p ≥ p *(κ), as conjectured in part by Loutsenko (J Phys A Math Gen 45(26):265001, 2012). The latter spectrum is, furthermore, shown to be intimately related, via the associated packing spectrum, to the radial SLE derivative exponents obtained by Lawler, Schramm and Werner (Acta Math 187(2):237–273, 2001), and to the local SLE tip multifractal exponents obtained from quantum gravity by the first author (Duplantier Proc. Sympos. Pure Math. 72(2):365–482, 2004). This is generalized to the integral means spectrum of the m-fold transform of the unbounded whole-plane SLE map. A succinct, preliminary, version of this study first appeared in Duplantier et al. (Coefficient estimates for whole-plane SLE processes, Hal-00609774, 2011).
Keywords
Harmonic Measure Multifractal Spectrum Boundary Equation Driving Function Loewner ChainReferences
- 1.Adams D.A., Lin Y.T., Sander L.M., Ziff R.M.: Harmonic measure for critical Potts clusters. Phys. Rev. E 80, 031141 (2009)CrossRefADSGoogle Scholar
- 2.Adams D.A., Sander L.M., Ziff R.M.: Harmonic Measure for Percolation and Ising Clusters Including Rare Events. Phys. Rev. Lett. 101, 144102 (2008)CrossRefADSGoogle Scholar
- 3.Applebaum D.: Lévy Processes and Stochastic Calculus, Second edition. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
- 4.Beliaev, D.: Harmonic measure on random fractals. Doctoral Thesis, Department of Mathematics, KTH, Stockholm (2005)Google Scholar
- 5.Beliaev, D., Duplantier, B., Zinsmeister, M.: Harmonic Measure and Whole-Plane SLE (2014). In preparationGoogle Scholar
- 6.Beliaev D., Smirnov S.: Harmonic Measure and SLE. Commun. Math. Phys. 290, 577–595 (2009)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 7.Belikov A., Gruzberg I.A., Rushkin I.: Statistics of harmonic measure and winding of critical curves from conformal field theory. J. Phys. A: Math. Gen. 41, 285006 (2008)CrossRefMathSciNetGoogle Scholar
- 8.Benjamini I., Schramm O.: KPZ in One Dimensional Random Geometry of Multiplicative Cascades. Commun. Math. Phys. 289, 46–56 (2009)CrossRefMathSciNetGoogle Scholar
- 9.Bettelheim E., Rushkin I., Gruzberg I.A., Wiegmann P.: Harmonic Measure of Critical Curves. Phys. Rev. Lett. 95, 170602 (2005)CrossRefADSGoogle Scholar
- 10.Bieberbach L.: Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. S-B. Preuss. Akad. Wiss. 1, 940–955 (1916)Google Scholar
- 11.Carleson L., Makarov N.G.: Some results connected with Brennan’s conjecture. Ark. Mat. 32, 33–62 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
- 12.Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189, 515–580 (2012)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 13.Chen Z.-Q., Rohde S.: Schramm-Loewner Equations Driven by Symmetric Stable Processes. Commun. Math. Phys. 285, 799–824 (2009)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 14.David F.: Conformal Field Theories Coupled to 2-D Gravity in the Conformal Gauge. Mod. Phys. Lett. A 3(17), 1651–1656 (1988)CrossRefADSGoogle Scholar
- 15.de Branges L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
- 16.Dieudonné J.: Sur les fonctions univalentes. C. R. Acad. Sci. Paris 192, 1148–1150 (1931)Google Scholar
- 17.Distler J., Kawai H.: Conformal Field Theory and 2D Quantum Gravity. Nucl. Phys. B 321, 509–527 (1989)CrossRefADSMathSciNetGoogle Scholar
- 18.Duplantier B.: Harmonic Measure Exponents for Two-Dimensional Percolation. Phys. Rev. Lett. 82, 3940–3943 (1999)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 19.Duplantier B.: Two-Dimensional Copolymers and Exact Conformal Multifractality. Phys. Rev. Lett. 82, 880–883 (1999)CrossRefADSMathSciNetGoogle Scholar
- 20.Duplantier B.: Conformally Invariant Fractals and Potential Theory. Phys. Rev. Lett. 84, 1363–1367 (2000)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 21.Duplantier, B.: Higher Conformal Multifractality. J. Stat. Phys. 110, 691–738 (2003). Special issue in honor of Michael E. Fisher’s 70th birthdayGoogle Scholar
- 22.Duplantier, B.: Conformal fractal geometry & boundary quantum gravity. In: Lapidus, M.L., van Frankenhuysen, M. (eds.) Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, volume 72 of Proc. Sympos. Pure Math., pp. 365–482. Amer. Math. Soc., Providence, RI (2004)Google Scholar
- 23.Duplantier, B.: Conformal Random Geometry. In: Bovier, A., Dunlop, F., den Hollander, F., van Enter, A., Dalibard, J. (eds.) Mathematical Statistical Physics (Les Houches Summer School, Session LXXXIII, 2005), pp. 101–217. Elsevier B.V., Amsterdam (2006)Google Scholar
- 24.Duplantier B., Binder I.A.: Harmonic Measure and Winding of Conformally Invariant Curves. Phys. Rev. Lett. 89, 264101 (2002)CrossRefADSGoogle Scholar
- 25.Duplantier B., Binder I.A.: Harmonic measure and winding of random conformal paths: A Coulomb gas perspective. Nucl. Phys. B [FS] 802, 494–513 (2008)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 26.Duplantier, B., Nguyen, T.P.C., Nguyen T.T.N., Zinsmeister, M.: Coefficient estimates for whole-plane SLE processes. Hal-00609774, 20 (2011)Google Scholar
- 27.Duplantier B., Sheffield S.: Duality and KPZ in Liouville Quantum Gravity. Phys. Rev. Lett. 102, 150603 (2009)CrossRefADSMathSciNetGoogle Scholar
- 28.Duplantier B., Sheffield S.: Liouville Quantum Gravity and KPZ. Invent. Math. 185, 333–393 (2011)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 29.Duplantier B., Sheffield S.: Schramm-Loewner Evolution and Liouville Quantum Gravity. Phys. Rev. Lett. 107, 131305 (2011)CrossRefADSGoogle Scholar
- 30.Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (1998)Google Scholar
- 31.Fekete M., Szegö G.: Eine Bemerkung über ungerade schlichte Funktionen. J. London Math. Soc. 8, 85–89 (1933)CrossRefGoogle Scholar
- 32.Feng J., MacGregor T.H.: Estimates on the integral means of the derivatives of univalent functions. J. Anal. Math 29, 203–231 (1976)CrossRefzbMATHGoogle Scholar
- 33.Frisch, U., Parisi, G.: Turbulence and predictability in geophysical fluid dynamics and climate dynamics. In: Ghil, M., Benzi, R.R., Parisi, G. (eds.) Proceedings of the International School of Physics Enrico Fermi, course LXXXVIII, pp. 84–87. North Holland, New York (1985)Google Scholar
- 34.Grunsky H.: Koeffizienten Bedingungen für schlicht abbidende meromorphe Funktionen. Math. Z. 45, 29–61 (1939)CrossRefMathSciNetGoogle Scholar
- 35.Halsey T.C., Jensen M.H., Kadanoff L.P., Procaccia I., Shraiman B.I.: Fractal measures and their singularities - The characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 36.Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Fractal measures and their singularities: The characterization of strange sets; Erratum: [Phys. Rev. A 33, 1141 (1986)]. Phys. Rev. A 34, 1601–1601 (1986)Google Scholar
- 37.Hastings M.B.: Exact Multifractal Spectra for Arbitrary Laplacian Random Walks. Phys. Rev. Lett. 88, 055506 (2002)CrossRefADSGoogle Scholar
- 38.Hentschel H.G.E., Procaccia I.: The infinite number of dimensions of probabilistic fractals and strange attractors. Physica D 8, 435–444 (1983)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 39.Johansson F., Sola A.: Rescaled Lévy-Loewner hulls and random growth. B. Sci. Math. 133(3), 238–256 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
- 40.Johansson Viklund.F., Lawler G.F.: Almost sure multifractal spectrum for the tip of an SLE curve. Acta Math. 209(2), 265–322 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
- 41.Jones P.W., Makarov N.G.: On coefficient problems for univalent functions and conformal dimensions. Duke Math. J. 66, 169–206 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
- 42.Kemppainen A.: Stationarity of SLE. J. Stat. Phys. 139, 108–121 (2010)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 43.Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B.: Fractal Structure of 2D-quantum gravity. Mod. Phys. Lett. A 3, 819–826 (1988)CrossRefADSMathSciNetGoogle Scholar
- 44.Kytölä K., Kemppainen A.: SLE local martingales, reversibility and duality. J. Phys. A: Math. Gen. 39, L657–L666 (2006)CrossRefADSzbMATHGoogle Scholar
- 45.Lawler, G.F.: Multifractal nature of two dimensional simple random walk paths. In: Picardello, M.A., Woess, W. (eds.) Random walks and discrete potential theory. Proceedings of the conference, Cortona, Italy, June 1997. Cambridge: Cambridge University Press. Symp. Math. 39, 231–264 (1999)Google Scholar
- 46.Lawler, G.F.: Multifractal analysis of the reverse flow for the Schramm-Loewner evolution. In: Bandt, C., Mörters, P., Zähle, M. (eds.) Fractal geometry and stochastics IV. Proceedings of the 4th conference, Greifswald, Germany, September 8–12, 2008. Basel: Birkhäuser. Progress in Probability 61, 73–107 (2009)Google Scholar
- 47.Lawler, G.F.: Fractal and Multifractal Properties of SLE. In: Ellwood, D., Newman, C., Sidoravicius, V., Werner, W. (eds.) Probability and statistical physics in two and more dimensions. Proceedings of the Clay Mathematics Institute summer school and XIV Brazilian school of probability, Búzios, Brazil, July 11–August 7, 2010, vol. 15, pp. 277–318. American Mathematical Society (AMS); Clay Mathematics Institute (2012)Google Scholar
- 48.Lawler G.F., Schramm O., Werner W.: Values of Brownian intersection exponents. I. Half-plane exponents. Acta Math. 187(2), 237–273 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
- 49.Lawler G.F., Schramm O., Werner W.: Values of Brownian intersection exponents. II. Plane exponents. Acta Math. 187(2), 275–308 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
- 50.Lawler G.F., Schramm O., Werner W.: Values of Brownian intersection exponents. III. Two-sided exponents. Ann. Inst. H. Poincaré Probab. Statist. 38(1), 109–123 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
- 51.Lawler G.F., Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 52.Lawler G.F., Werner W.: Intersection exponents for planar Brownian motion. Ann. Probab. 27(4), 1601–1642 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
- 53.Lawler G.F., Werner W.: Universality for conformally invariant intersection exponents. J. Eur. Math. Soc. 2(4), 291–328 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
- 54.Lawler, G.F.: Conformally invariant processes in the plane. Volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2005)Google Scholar
- 55.Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Lapidus, M.L., van Frankenhuysen, M. (eds.) Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, vol. 72 of Proc. Sympos. Pure Math., pp. 339–364. Amer. Math. Soc., Providence, RI (2004)Google Scholar
- 56.Lebedev, N.A., Milin, I.M.: On the coefficients of certain classes of univalent functions. Mat. Sb. 28, 359–400 (1951). (In Russian)Google Scholar
- 57.Littlewood J.E.: On inequalities in the theory of functions. Proc. London Math. Soc. 23, 481–519 (1925)CrossRefGoogle Scholar
- 58.Littlewood J.E., Paley R.E.A.C.: A proof that an odd schlicht function has bounded coefficients. J. London Math. Soc. 7, 167–169 (1932)CrossRefGoogle Scholar
- 59.Loutsenko I.: SLE κ: correlation functions in the coefficient problem. J. Phys. A Math. Gen. 45(26), 265001 (2012)CrossRefADSMathSciNetGoogle Scholar
- 60.Loutsenko, I., Yermolayeva, O.: On exact multi-fractal spectrum of the whole-plane SLE. arXiv:1203.2756, (2012)
- 61.Loutsenko, I., Yermolayeva, O.: Average harmonic spectrum of the whole-plane SLE. J. Stat. Mech. page P04007 (2013)Google Scholar
- 62.Loutsenko, I., Yermolayeva, O.: On Harmonic Measure of the Whole Plane Lévy-Loewner Evolution. arXiv:1301.6508, (2013)
- 63.Löwner K.: Untersuchungen über schlichte konforme Abildungendes Einheitskreises. Math. Annalen 89, 103–121 (1923)CrossRefzbMATHGoogle Scholar
- 64.Makarov N.G.: Distorsion of boundary sets under conformal mapping. Proc. London Math. Soc. 51, 369–384 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
- 65.Makarov, N.G.: Fine structure of harmonic measure. Rossiĭskaya Akademiya Nauk. Algebra i Analiz 10, 1–62 (1998). English translation in St. Petersburg Math. J. 10, 217–268 (1999)Google Scholar
- 66.Mandelbrot B.B.: Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid. Mech. 62, 331–358 (1974)CrossRefADSzbMATHGoogle Scholar
- 67.Milin I.M.: Estimation of coefficients of univalent functions. Dokl. Akad. Nauk SSSR 160, 196–198 (1965)MathSciNetGoogle Scholar
- 68.Oikonomou, P., Rushkin, I., Gruzberg, I.A., Kadanoff, L.P.: Global properties of stochastic Loewner evolution driven by Lévy processes. J. Stat. Mech. page P01019 (2008)Google Scholar
- 69.Pommerenke, Ch.: Univalent functions. Van den Hoek and Ruprecht, Göttingen (1975)Google Scholar
- 70.Pommerenke Ch.: Boundary Behaviour of Conformal Maps. Grundlehren der mathematischen Wissenschaften, vol. 299. Springer, Berlin (1992)CrossRefGoogle Scholar
- 71.Rhodes R., Vargas V.: KPZ formula for log-infinitely divisible multifractal random measures. ESAIM: Probability and Statistics 15, 358–371 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
- 72.Robertson M.S.: On the theory of univalent functions. Ann. of Math 37, 374–408 (1936)CrossRefMathSciNetGoogle Scholar
- 73.Rohde S., Schramm O.: Basic Properties of SLE. Ann. of Math. 161, 883–924 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
- 74.Rushkin I., Bettelheim E., Gruzberg I.A., Wiegmann P.: Critical curves in conformally invariant statistical systems. J. Phys. A: Math. Gen. 40, 2165–2195 (2007)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 75.Rushkin, I., Oikonomou, P., Kadanoff, L.P., Gruzberg, I.A.: Stochastic Loewner evolution driven by Lévy processes. J. Stat. Mech. page P01001 (2006)Google Scholar
- 76.Schramm O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math 118, 221–288 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
- 77.Schramm O., Sheffield S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21–137 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
- 78.Smirnov S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3), 239–244 (2001)CrossRefADSzbMATHGoogle Scholar
- 79.Smirnov S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math. (2) 172(2), 1435–1467 (2010)CrossRefzbMATHMathSciNetGoogle Scholar