Approximation of the Integrated Density of States on Sofic Groups
- 89 Downloads
- 2 Citations
Abstract
In this paper, we study spectral properties of self-adjoint operators on a large class of geometries given via sofic groups. We prove that the associated integrated densities of states can be approximated via finite volume analogues. This is investigated in the deterministic as well as in the random setting. In both cases, we cover a wide range of operators including in particular unbounded ones. The large generality of our setting allows one to treat applications from long-range percolation and the Anderson model. Our results apply to operators on \({\mathbb{Z}^d}\) , amenable groups, residually finite groups and therefore in particular to operators on trees. All convergence results are established without an ergodic theorem at hand.
Keywords
Matrix Element Cayley Graph Ergodic Theorem Amenable Group Anderson ModelReferences
- 1.Aliprantis C.D., Border K.C.: Infinite Dimensional Analysis: A hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)Google Scholar
- 2.Adachi T., Sunada T.: Density of states in spectral geometry. Comment. Math. Helv. 68(1), 480–493 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
- 3.Ayadi, S., Schwarzenberger, F., Veselić, I.: Uniform existence of the integrated density of states for randomly weighted Hamiltonians on long-range percolation graphs. Math. Phys. Anal. Geom (2012) online first. doi: 10.1007/s11040-013-9133-2
- 4.Aizenman M., Warzel S.: The canopy graph and level statistics for random operators on trees. Math. Phys. Anal. Geom. 9(4), 291–333 (2008)CrossRefMathSciNetGoogle Scholar
- 5.Biggs, N.L.: Girth and residual finiteness. Combinatorica 8(4) 307–312 (1988). MR 981888 (90c:05105)Google Scholar
- 6.Brooks S., Lindenstrauss E.: Non-localization of eigenfunctions on large regular graphs. Israel J. Math. 193(1), 1–14 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
- 7.Bowen L.: Measure conjugacy invariants for actions of countable sofic groups. J. Am. Math. Soc. 23(1), 217–245 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
- 8.Bowen L.: Sofic entropy and amenable groups. Ergod. Theor. Dyn. Syst. 32, 427–466 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
- 9.Bartholdi, L., Woess, W.: Spectral computations on lamplighter groups and Diestel-Leader graphs. J. Fourier Anal. Appl. 11(2), 175–202 (2005). MR 2131635 (2006e:20052)Google Scholar
- 10.Cycon H., Froese R., Kirsch W., Simon B.: Schrödinger Operators, 3rd edn. Springer, Berlin (2008)Google Scholar
- 11.Cornulier Y.: A sofic group away from amenable groups. Math. Ann. 350, 269–275 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
- 12.de Branges, L.: The Stone-Weierstrass theorem. Proc. Amer. Math. Soc. 10, 822–824 (1959). MR 0113131 (22 #3970)Google Scholar
- 13.Dodziuk J., Linnell P., Mathai V., Schick T., Yates S.: Approximating L 2-invariants, and the Atiyah conjecture. Commun. Pur. Appl. Math. 56(7), 839–873 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
- 14.Dodziuk, J., Mathai, V.: Approximating l 2 invariants of amenable covering spaces: A heat kernel approach. In: Contemporary Mathematics, vol. 211, pp. 151–167. AMS (1997)Google Scholar
- 15.Dodziuk J., Mathai V.: Approximating L 2 invariants of amenable covering spaces: a combinatorial approach. J. Funct. Anal. 154(2), 359–378 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
- 16.Eckmann B.: Approximating ℓ 2-Betti numbers of an amenable covering by ordinary Betti numbers. Comment. Math. Helv. 74(1), 150–155 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
- 17.Elek G., Szabó E.: On sofic groups. J. Group Theory 9(2), 161–171 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
- 18.Froese R., Hasler D., Spitzer W.: A geometric approach to absolutely continuous spectrum for discrete Schrödinger operators. Prog Probab 64, 201–226 (2011)MathSciNetGoogle Scholar
- 19.Gromov M.: Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc. 1(2), 109–197 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
- 20.Komarov, N., McNeill, R.T., Webster, J.T.: Normal subgroups of the free group. In: Proceedings of the Oregon State University. REU in Mathematics, pp. 61–80 (2007)Google Scholar
- 21.Lenz D., Müller P., Veselić I.: Uniform existence of the integrated density of states for models on \({{\mathbb{Z}}^d}\) . Positivity 12(4), 571–589 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
- 22.Lenz D., Peyerimhoff N., Veselić I.: Integrated density of states for random metrics on manifolds. Proc. London Math. Soc. 88(3), 733–752 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 23.Lenz D., Peyerimhoff N., Veselić I.: Groupoids, von neumann algebras, and the integrated density of states. Math. Phys. Anal. Geom. 10(1), 1–41 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
- 24.Lück, W., Schick, T.: L 2-torsion of hyperbolic manifolds of finite volume. Geom. Funct. Anal. 9(3), 518–567 (1999). MR 1708444 (2000e:58050)Google Scholar
- 25.Lenz D., Stollmann P.: An ergodic theorem for Delone dynamical systems and existence of the density of states. J. Anal. Math. 97(1), 1–23 (2005)CrossRefMathSciNetGoogle Scholar
- 26.Lenz, D., Schwarzenberger, F., Veselić, I.: A Banach space-valued ergodic theorem and the uniform approximation of the integrated density of states. Geom. Dedicata 150, 1–34 (2011). MR 2753695 (2012c:22010).Google Scholar
- 27.Lück W.: Approximating l 2-invariants by their finite-dimensional analogues. Geom. Funct. Anal. 4(4), 455–481 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
- 28.McDiarmid, C.: Concentration. In: Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 1–46 (1998)Google Scholar
- 29.McKay B.D.: The expected eigenvalue distribution of a large regular graph. Linear Algebra Appl. 40, 203–216 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
- 30.Mathai V., Schick T., Yates S.: Approximating spectral invariants of Harper operators on graphs II. Proc. Amer. Math. Soc. 131(6), 1917–1923 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
- 31.Mathai V., Yates S.: Approximating spectral invariants of Harper operators on graphs. J. Funct. Anal. 188(1), 111–136 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
- 32.Newman M.: Free subgroups and normal subgroups of the modular group. Am. J. Math. 86(1), 262–265 (1964)CrossRefGoogle Scholar
- 33.Pastur L.A.: Selfaverageability of the number of states of the Schrödinger equation with a random potential. Mat. Fiz. i Funkcional. Anal. 238(2), 111–116 (1971)MathSciNetGoogle Scholar
- 34.Pestov V.: Hyperliner and sofic groups: a brief guide. B. Symb. Log. 14(4), 449–480 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
- 35.Pastur, L., Figotin, A.: Spectra of random and almost-periodic operators. In: Grundlehren der mathematischen Wissenschaften, vol. 297. Springer, Berlin (1992)Google Scholar
- 36.Pogorzelski, F., Schwarzenberger, F.: A banach space-valued ergodic theorem for amenable groups and applications. J. Anal. Math. 55 (2014, to appear)Google Scholar
- 37.Peyerimhoff N., Veselić I.: Integrated density of states for ergodic random Schrödinger operators on manifolds. Geometriae Dedicata 91(1), 117–135 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
- 38.Reed M., Simon B.: Functional Analysis, vol. 1. Academic Press Inc, New York (1930)Google Scholar
- 39.Rudin W.: Real and Complex Analysis, 3 edn. McGraw-Hill Book Co, Singapore (1987)zbMATHGoogle Scholar
- 40.Schwarzenberger F.: Uniform approximation of the integrated density of states for long-range percolation Hamiltonians. J. Stat. Phys. 146(6), 1156–1183 (2012)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 41.Schwarzenberger, F.: The integrated density of states for operators on groups. Ph.D. thesis, Chemnitz University of Technology (2013). http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-123241
- 42.Shubin M.A.: Spectral theory and the index of elliptic operators with almost-periodic coefficients. Russ. Math. Surv. 34(2), 109–157 (1979)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 43.Szabó E.: Soficgroups and direct finiteness. J. Algebra 280(2), 426–434 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 44.Sznitman A.-S.: Lifschitz tail and Wiener sausage on hyperbolic space. Commun. Pure Appl. Math. 42(8), 1033–1065 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
- 45.Sznitman A.-S.: Lifschitz tail on hyperbolic space: Neumann conditions. Commun. Pure Appl. Math. 43(1), 1–30 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
- 46.Thom A.: Sofic groups and diophantine approximation. Commun. Pure Appl. Math. 511, 1155–1171 (2008)CrossRefMathSciNetGoogle Scholar
- 47.Veselić I.: Spectral analysis of percolation Hamiltonians. Math. Ann. 331(4), 841–865 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
- 48.Weiss, B.: Sofic groups and dynamical systems. Sankhy\({\bar{a}}\) Ser. A 62(3), 350–359 (2000). Ergodic theory and harmonic analysis (Mumbai, 1999). MR 1803462 (2001j:37022)Google Scholar