Advertisement

Annales Henri Poincaré

, Volume 16, Issue 3, pp 691–708 | Cite as

Multi-Species Mean Field Spin Glasses. Rigorous Results

  • Adriano Barra
  • Pierluigi Contucci
  • Emanuele MingioneEmail author
  • Daniele Tantari
Article

Abstract

We study a multi-species spin glass system where the density of each species is kept fixed at increasing volumes. The model reduces to the Sherrington–Kirkpatrick one for the single species case. The existence of the thermodynamic limit is proved for all density values under a convexity condition on the interaction. The thermodynamic properties of the model are investigated and the annealed, the replica-symmetric and the replica symmetry breaking bounds are proved using Guerra’s scheme. The annealed approximation is proved to be exact under a high-temperature condition. We show that the replica-symmetric solution has negative entropy at low temperatures. We study the properties of a suitably defined replica symmetry breaking solution and we optimize it within a novel ziggurat ansatz. The generalized order parameter is described by a Parisi-like partial differential equation.

Keywords

Thermodynamic Limit Spin Glass Annealed Approximation Replica Symmetry Spin Glass Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barra A.: Irreducible free energy expansion and overlap locking in mean field spin glasses. J. Stat. Phys. 123(3), 601–614 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barra A., Bernacchia A., Santucci E., Contucci P.: On the equivalence of Hopfield networks and Boltzmann machines. Neural Netw. 34, 1–9 (2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    Barra, A., Di Biasio, A., Guerra, F.: Replica symmetry breaking in mean field spin glasses trough Hamilton–Jacobi technique. J. Stat. Mech. P09006 (2010)Google Scholar
  4. 4.
    Barra A., Genovese G., Guerra F.: The replica symmetric behavior of the analogical neural network. J. Stat. Phys. 140, 784–796 (2010)CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    Barra A., Genovese G., Guerra F.: Equilibrium statistical mechanics of bipartite spin systems. J.Phys. A 44(24), 245002 (2011)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Barra A., Genovese G., Guerra F., Tantari D.: How glassy are neural networks?. JSTAT 07, 07009 (2012)Google Scholar
  7. 7.
    Bovier A., Klimovsky A.: The Aizenman–Sims–Starr and Guerra’s schemes for the SK model with multidimensional spins. Electron. J. Probab. 14(8), 161–241 (2009)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Fedele M., Contucci P.: Scaling limits for multispecies statistical mechanics mean-field models. J. Stat. Phys. 144(6), 1186–1205 (2011)CrossRefADSzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fedele M., Unguendoli F.: Rigorous results on the bipartite mean-field model. J. Phys. A Math. Theor. 45, 3850–3860 (2012)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gallo I., Contucci P.: Bipartite mean field spin systems. Existence and solution. Math. Phys. E J. 14, 463 (2008)MathSciNetGoogle Scholar
  11. 11.
    Guerra F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1–12 (2003)CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    Guerra, F.: The cavity method in the mean field spin glass model. In: Albeverio, S., et al. (eds.) Advances in Dynamical Systems and Quantum Physics. Singapore (1995)Google Scholar
  13. 13.
    Guerra F., Toninelli F.L.: The infinite volume limit in generalized mean field disordered models. Markov Proc. Relat. Fields 9, 195–207 (2003)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Guerra F., Toninelli F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230, 71–79 (2002)CrossRefADSzbMATHMathSciNetGoogle Scholar
  15. 15.
    Panchenko, D.: The Free Energy in a Multi-Species Sherrington–Kirkpatrick Model. arXiv:1310.6679 (2013)
  16. 16.
    Panchenko, D., Talagrand, M.: Guerra’s Interpolation Using Derrida–Ruelle Cascades. arXiv:0708.3641 (2007)
  17. 17.
    Talagrand, M.: Mean field models for spin glasses, volume II. In: Advanced Replica-Symmetry and Low Temperature. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics, vol. 55. Springer-Verlag, New York (2011)Google Scholar
  18. 18.
    Talagrand M.: Spin glasses: a challenge for mathematicians. Cavity and mean field models. Springer Verlag, New York (2003)Google Scholar
  19. 19.
    Talagrand M.: A general form of certain mean field models for spin glasses. Probab. Theory Relat. Fields 143(1-2), 97–111 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Talagrand, M.: Mean field models for spin glasses: some obnoxious problems. In: Spin Glasses Lecture Notes in Mathematics, vol. 1900, Springer, Berlin (2007)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Adriano Barra
    • 1
  • Pierluigi Contucci
    • 3
  • Emanuele Mingione
    • 3
    Email author
  • Daniele Tantari
    • 2
  1. 1.Dipartimento di FisicaSapienza Università di RomaRomeItaly
  2. 2.Dipartimento di MatematicaSapienza Università di RomaRomeItaly
  3. 3.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations