Advertisement

Annales Henri Poincaré

, Volume 16, Issue 5, pp 1267–1281 | Cite as

Next-to-Leading Order in the Large N Expansion of the Multi-Orientable Random Tensor Model

  • Matti Raasakka
  • Adrian TanasaEmail author
Article

Abstract

In this paper we analyze in detail the next-to-leading order (NLO) of the recently obtained large N expansion for the multi-orientable (MO) tensor model. From a combinatorial point of view, we find the class of Feynman tensor graphs contributing to this order in the expansion. Each such NLO graph is characterized by the property that it contains a certain non-orientable ribbon subgraph (a non-orientable jacket). Furthermore, we find the radius of convergence and the susceptibility exponent of the NLO series for this model. These results represent a first step towards the larger goal of defining an appropriate double-scaling limit for the MO tensor model.

Keywords

Colored Model Feynman Graph Lead Order Tensor Model Spin Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Di Francesco, P., Ginsparg, P., Zinn-Justin, J.: 2D gravity and random matrices. Phys. Rept. 254, 1–133 (1995). arXiv:hep-th/9306153
  2. 2.
    Sasakura N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A6, 2613 (1991)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Ambjorn J., Durhuus B., Jonsson T.: Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A6, 1133 (1991)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    De Pietri, R., Freidel, L., Krasnov, K., Rovelli, C.: Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space. Nucl. Phys. B574, 785–806 (2000). arXiv:hep-th/9907154
  5. 5.
    Gurau, R.: Colored group field theory. Commun. Math. Phys. 304, 69 (2011). arXiv:0907.2582 [hep-th]
  6. 6.
    Gurau, R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincaré 13, 399–423 (2012). arXiv:1102.5759 [gr-qc]
  7. 7.
    Gurau, R., Ryan, J.P.: Colored tensor models: a review. SIGMA 8, 020 (2012). arXiv:1109.4812 [hep-th]
  8. 8.
    Rovelli C.: Quantum Gravity (Cambridge Monographs on Mathematical Physics). Cambridge University Press, Cambridge (2007)Google Scholar
  9. 9.
    Gurau, R., Rivasseau, V.: The 1/N expansion of colored tensor models in arbitrary dimension. Eurphys. Lett. 95, 50004 (2011). arXiv:1101.4182 [gr-qc]
  10. 10.
    Bonzom, V., Gurau, R., Riello, A., Rivasseau, V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174–195 (2011), arXiv:1105.3122 [hep-th]
  11. 11.
    Kaminski, W., Oriti, D., Ryan, J.P.: Towards a double-scaling limit for tensor models: probing sub-dominant orders. arXiv:1304.6934 [hep-th]
  12. 12.
    Gurau, R., Schaeffer, G.: Regular colored graphs of positive degree. arXiv:1307.5279 [math.CO]
  13. 13.
    Dartois, S., Gurau, R., Rivasseau, V.: Double Scaling in Tensor Models with a Quartic Interaction. JHEP (in press). arXiv:1307.5281 [hep-th]
  14. 14.
    Tanasa, A.: Multi-orientable group field theory. J. Phys. A 45, 165401 (2012). arXiv:1109.0694 [math.CO]
  15. 15.
    Tanasa, A.: Tensor models, a quantum field theoretical particularization. Proc. Rom. Acad. A 133, 225 (2012). arXiv:1211.4444 [math.CO]
  16. 16.
    Dartois, S., Rivasseau, V., Tanasa, A.: The 1/N expansion of multi-orientable random tensor models. Ann. Henri Poincaré (in press). arXiv:1301.1535 [hep-th]
  17. 17.
    Brézin E., Kazakov V.A.: Exactly solvable field theories of closed strings. Phys. Lett. B236, 144 (1990)CrossRefADSGoogle Scholar
  18. 18.
    Douglas M.R., Shenker S.H.: Strings in less than one dimension. Nucl. Phys. B335, 635 (1990)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Gross D.J., Migdal A.A.: Non-perturbative two-dimensional quantum gravity. Phys. Rev. Lett. 64, 127 (1990)CrossRefADSzbMATHMathSciNetGoogle Scholar
  20. 20.
    Bonzom, V., Gurău, R., Rivasseau, V.: Random tensor models in the large N limit: uncoloring the colored tensor models. Phys. Rev. D85, 084037 (2012). arXiv:1202.3637 [hep-th]
  21. 21.
    Rivasseau, V.: Constructive matrix theory. JHEP 0709, 008 (2007). arXiv:0706.1224 [hep-th]

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.LIPN Institut GaliléeCNRS UMR 7030 Université Paris 13VilletaneuseFrance
  2. 2.Horia Hulubei National Institute for Physics and Nuclear EngineeringMagureleRomania

Personalised recommendations