Advertisement

Annales Henri Poincaré

, Volume 16, Issue 2, pp 641–650 | Cite as

Discrete Bargmann Transforms Attached to Landau Levels on the Riemann Sphere

  • Zouhaïr MouaynEmail author
Article
  • 67 Downloads

Abstract

We construct a family of transforms labeled by (ν, m) and mapping isometrically square integrable functions on a finite subset of \({\mathbb{R}}\) onto L 2-eigenspaces associated with the discrete spectrum of a charged particle evolving in the Riemann sphere under influence of a uniform magnetic field with a strength proportional to \({2\nu \in \mathbb{Z}_{+}^{\ast}}\). These transforms are attached to spherical Landau levels \({\lambda _{m}^{\nu}=\left( 2m+1\right) \nu +m\left( m+1\right)}\) with \({m\in \mathbb{Z}_{+}}\) and are called discrete Bargmann transforms.

Keywords

Coherent State Landau Level Bergman Space Riemann Sphere Hermitian Line Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Transformations de Bargmann Discrètes Attachées aux Niveaux de Landau sur la Sphère de Riemann

Résumé

On construit une famille de transformations indexées par (ν, m) qui appliquent isométriquement les fonctions de carré intégrables sur un sous-ensemble fini de \({\mathbb{R}}\) sur les espaces propres L 2 associés au spectre discret d’une particule chargée évoluant sur la sphère de Riemann sous l’influence d’un champ magnétique uniforme d’une intensité proportionnelle à \({2\nu \in \mathbb{Z}_{+}^{\ast}}\). Ces transformations sont attachées aux niveaux de Landau sphériques \({\lambda _{m}^{\nu}=\left( 2m+1\right) \nu +m\left( m+1\right)}\) avec \({m\in \mathbb{Z}_{+}}\) et sont appelées transformations de Bargmann discrètes.

References

  1. 1.
    Ismail M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications. Cambridge university press, Cambridge (2005)CrossRefGoogle Scholar
  2. 2.
    Atakishiyev N.M., Suslov S.K.: Difference analogs of the harmonic oscillator. Theor. Math. Phys. 85, 1055–1062 (1991)CrossRefGoogle Scholar
  3. 3.
    Ferapontov E.V., Veselov A.P.: Integrable Schrödinger operators with magnetic fields: factorization method on curved surfaces. J. Math. Phys. 42, 590–607 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Hirzebruch F.: Topological Methods in Algebraic Geometry’. 131, Grundlehren der mathematischen Wissenschaften. Sringer, London (1978)Google Scholar
  5. 5.
    Simms D.J., Woodhouse N.M.: Lectures on Geometric Quantization. Lectures Notes in Physics, vol. 53. Springer-Verlag, Berlin (1976)Google Scholar
  6. 6.
    Wu T.T., Yang C.N.: Dirac monopole without strings: monopole harmonics. Nucl. Phys B. 107, 364–380 (1976)ADSCrossRefGoogle Scholar
  7. 7.
    Shnir Y.M.: Magnetic Monopoles, Texts and Monographs in Physics. Springer, Berlin, Heidelberg (2005)Google Scholar
  8. 8.
    Gazeau J.P.: Coherent States in Quantum Physics. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)CrossRefGoogle Scholar
  9. 9.
    Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform, Part I. Commun. Pure. Appl. Math. 14, 187–214 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Mathai A.M., Saxena R.K.: Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences. Lect. Notes. Math., vol. 348. Springer, Berlin (1973)Google Scholar
  11. 11.
    Klauder J.R.: Continuous representation theory I. Postulates of continuous representation theory. J. Math. Phys. 4, 1055–1058 (1963)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Peetre J., Zhang G.: Harmonic analysis on the quantized Riemann sphere. Int. J. Math. Math. Sci. 16(2), 225–244 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Perelomov A.: Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 222–236 (1972)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Chenaghlou A., Faizy O.: Barut–Girardello and Klauder–Perelomov coherent states for the Kravchuk functions. J. Math. Phys. 48, 112106 (2007)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mouayn Z.: Coherent states attached to Landau levels on the Riemann sphere. Rep. Math. Phys. 55(2), 269–276 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Mouayn Z.: Coherent states attached to the spectrum of the Bochner Laplacian for the Hopf fibration. J. Geo. Phys. 59(2), 256–261 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Brychkov Y.A.: Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas. Taylor & Francis Group LLC, New York (2008)zbMATHGoogle Scholar
  18. 18.
    Srivastava H.M., Manocha H.L.: A Treatise on Generating Functions. Ellis Horwood, London (1984)zbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.CMUC, Department of MathematicsUniversity of CoimbraCoimbraPortugal
  2. 2.Sultan Moulay Slimane University, Faculty of Sciences and Technics (M’Ghila)Béni MellalMorocco

Personalised recommendations