Advertisement

Annales Henri Poincaré

, Volume 16, Issue 3, pp 709–799 | Cite as

The Altshuler–Shklovskii Formulas for Random Band Matrices II: The General Case

  • László Erdős
  • Antti KnowlesEmail author
Article

Abstract

The Altshuler–Shklovskii formulas (Altshuler and Shklovskii, BZh Eksp Teor Fiz 91:200, 1986) predict, for any disordered quantum system in the diffusive regime, a universal power law behaviour for the correlation functions of the mesoscopic eigenvalue density. In this paper and its companion (Erdős and Knowles, The Altshuler–Shklovskii formulas for random band matrices I: the unimodular case, 2013), we prove these formulas for random band matrices. In (Erdős and Knowles, The Altshuler–Shklovskii formulas for random band matrices I: the unimodular case, 2013) we introduced a diagrammatic approach and presented robust estimates on general diagrams under certain simplifying assumptions. In this paper, we remove these assumptions by giving a general estimate of the subleading diagrams. We also give a precise analysis of the leading diagrams which give rise to the Altschuler–Shklovskii power laws. Moreover, we introduce a family of general random band matrices which interpolates between real symmetric (β = 1) and complex Hermitian (β = 2) models, and track the transition for the mesoscopic density–density correlation. Finally, we address the higher-order correlation functions by proving that they behave asymptotically according to a Gaussian process whose covariance is given by the Altshuler–Shklovskii formulas.

Keywords

Density Correlation Band Matrix Band Matrice Versus Main Random Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Altshuler, B.L., Shklovskii, B.I.: Repulsion of energy levels and the conductance of small metallic samples. Zh. Eksp. Teor. Fiz. (Sov. Phys. JETP) 91 (64), 220 (1986)Google Scholar
  2. 2.
    Chalker J.T., Kravtsov V.E., Lerner I.V.: Spectral rigidity and eigenfunction correlations at the Anderson transition. J. Exp. Theor. Phys. Lett. 64, 386–392 (1996)CrossRefGoogle Scholar
  3. 3.
    Erdős, L., Knowles, A.: The Altshuler–Shklovskii formulas for random band matrices I: the unimodular case (2013, preprint). arXiv:1309.5106
  4. 4.
    Erdős L., Knowles A.: Quantum diffusion and delocalization for band matrices with general distribution. Ann. H. Poincaré 12, 1227–1319 (2011)CrossRefGoogle Scholar
  5. 5.
    Erdős L., Knowles A.: Quantum diffusion and eigenfunction delocalization in a random band matrix model. Commun. Math. Phys. 303, 509–554 (2011)CrossRefADSGoogle Scholar
  6. 6.
    Erdős L., Knowles A., Yau H.-T., Yin J.: The local semicircle law for a general class of random matrices. Electron. J. Probab. 18, 1–58 (2013)Google Scholar
  7. 7.
    Feldheim O.N., Sodin S.: A universality result for the smallest eigenvalues of certain sample covariance matrices. Geom. Funct. Anal. 20, 88–123 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fyodorov Y.V., Mirlin A.D.: Scaling properties of localization in random band matrices: a σ-model approach. Phys. Rev. Lett. 67, 2405–2409 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
  9. 9.
    Mirlin A.D., Evers F.: Multifractality and critical fluctuations at the Anderson transition. Phys. Rev. B 62(12), 7920–7933 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Mirlin A.D., Fyodorov Y.V., Dittes F.-M., Quezada J., Seligman T.H.: Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices. Phys. Rev. E 54(1), 3221–3230 (1996)CrossRefADSGoogle Scholar
  11. 11.
    Sodin S.: The spectral edge of some random band matrices. Ann. Math. 172(3), 2223–2251 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Spencer, T.: Random banded and sparse matrices, Chap. 23. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory (2011)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.Departement Mathematik, ETH ZürichHG G 66.5ZurichSwitzerland

Personalised recommendations