Advertisement

Annales Henri Poincaré

, Volume 16, Issue 2, pp 347–364 | Cite as

Semi-Classical Measures on Quantum Graphs and the Gauß Map of the Determinant Manifold

  • Yves Colin de VerdièreEmail author
Article

Abstract

In this paper, we describe the weak limits of the measures associated to the eigenfunctions of the Laplacian on a Quantum graph for a generic metric in terms of the Gauss map of the determinant manifold. We describe also all the limits with minimal support (the “scars”).

Keywords

Manifold Minimal Support Simple Path Smooth Point Simple Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Band R.: The nodal count {0, 1, 2, 3, . . .} implies the graph is a tree. Phil. Trans. R. Soc. A 372, (2014)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Band R., Berkolaiko G.: Universality of the momentum band density of periodic networks. Phys. Rev. Lett. 111, 130404 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Barra F., Gaspard P.: On the level spacing distribution in quantum graphs. J. Stat. Phys. 101, 283–319 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Barra F., Gaspard P.: Classical dynamics on graphs. Phys. Rev. E 63, 066215 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Berkolaiko, G., Kuchment, P.: Introduction to quantum graphs. Mathematical Surveys and Monographs (AMS), vol. 186 (2013)Google Scholar
  6. 6.
    Berkolaiko G., Keating J., Winn B.: No quantum ergodicity for star graphs. Commun. Math. Phys. 250, 259–285 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Berkolaiko G., Winn B.: Relationship between scattering matrix and spectrum of quantum graphs. Trans. AMS 362, 6261–6277 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cattaneo C.: The spectrum of the continuous laplacian on a graph. Monatshefte für Mathematik 124, 215–235 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Colinde Verdière Y.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102, 497–502 (1985)CrossRefGoogle Scholar
  10. 10.
    Friedlander L.: Genericity of simple eigenvalues for a metric graph. Israel J. Math. 146, 149–156 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gnutzman S., Keating J.P., Piotet F.: Eigenfunction statistics on quantum graphs. Ann. Phys. 325, 2595–2640 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Jakobson, D., Safarov, Y., Strohmaier, A.: The semi-classical theory of discontinuous systems and ray-splitting billiards (with an Appendix of Yves Colin de Verdière). Am. J. Math. (2014) (to appear). ArXiv:1301.6783v5
  13. 13.
    Keating J.P., Marklof J., Winn B.: Value distribution of the eigenfunctions and spectral determinants of quantum star graphs. Commun. Math. Phys. 241, 421–452 (2003)ADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    Nicaise, S.: Some results on spectral theory over networks, applied to nerve impulse transmission. Orthogonal polynomials and applications (Bar-le-Duc, 1984), Lecture Notes in Mathematics, vol. 1171, pp. 532–541. Springer, Berlin (1985)Google Scholar
  15. 15.
    Nicaise, S.: Approche spectrale des problèmes de diffusion sur les réseaux. Séminaire de Théorie du Potentiel, Paris, No. 8. Lecture Notes in Mathematics, vol. 1235, pp. 120–140. Springer, Berlin (1987)Google Scholar
  16. 16.
    Schanz H., Kottos T.: Scars on quantum networks ignore the lyapunov exponent. Phys. Rev. Lett. 90, 234101 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Shnirelman A.I.: Ergodic properties of eigenfunctions. Uspehi Mat. Nauk 29, 181–182 (1974)Google Scholar
  18. 18.
    Shnirelman, A.I.: On the asymptotic properties of eigenfunctions in the regions of chaotic motion. In: Lazutkin, V. (ed.) KAM Theory and Semiclassical Approximations to Eigenfunctions. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 24. Springer, Berlin (1993)Google Scholar
  19. 19.
    Zelditch S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Institut Fourier, Unité mixte de recherche CNRS-UJF 5582Université de GrenobleSaint Martin d’Hères CedexFrance

Personalised recommendations