Inverse-Closed Algebras of Integral Operators on Locally Compact Groups
Article
First Online:
- 102 Downloads
- 1 Citations
Abstract
We construct some inverse-closed algebras of bounded integral operators with operator-valued kernels, acting in spaces of vector-valued functions on locally compact groups. To this end we make use of covariance algebras associated to C*-dynamical systems defined by the C*-algebras of right uniformly continuous functions with respect to the left regular representation.
Keywords
Integral Operator Compact Group Banach Algebra Left Ideal Integral Kernel
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full article text
References
- 1.Baskakov, A.G.: Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis. (Russian) Sibirsk. Mat. Zh. 38(1), 14–28 (1997) (i; translation in Siberian Math. J. 38(1), 10–22 (1997))Google Scholar
- 2.Beltiţă I., Beltiţă D.: Algebras of symbols associated with the Weyl calculus for Lie group representations. Monatsh. Math. 167(1), 13–33 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
- 3.Beltiţă I., Beltiţă D.: On the differentiable vectors for contragredient representations. C. R. Math. Acad. Sci. Paris 351(13–14), 513–516 (2013)zbMATHMathSciNetGoogle Scholar
- 4.Biller H.: Continuous inverse algebras with involution. Forum Math. 22(6), 1033–1059 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
- 5.Blasco O., Calabuig J.M.: Vector-valued functions integrable with respect to bilinear maps. Taiwan. J. Math. 12(9), 2387–2403 (2008)zbMATHMathSciNetGoogle Scholar
- 6.Buchholz D., Grundling H.: The resolvent algebra: a new approach to canonical quantum systems. J. Funct. Anal. 254(11), 2725–2779 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
- 7.Buchholz D., Grundling H.: Lie algebras of derivations and resolvent algebras. Comm. Math. Phys. 320(2), 455–467 (2013)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 8.Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups. Pac. J. Math. 16, 483–496 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
- 9.Damak M., Georgescu V.: Self-adjoint operators affiliated to C*-algebras. Rev. Math. Phys. 16(2), 257–280 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 10.Ellis H.W.: A note on Banach function spaces. Proc. Am. Math. Soc. 9, 75–81 (1958)CrossRefzbMATHGoogle Scholar
- 11.Ellis H.W., Halperin I.: Function spaces determined by a levelling length function. Can. J. Math. 5, 576–592 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
- 12.Farrell B., Strohmer T.: Inverse-closedness of a Banach algebra of integral operators on the Heisenberg group. J. Oper. Theory 64(1), 189–205 (2010)zbMATHMathSciNetGoogle Scholar
- 13.Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Functions, Series, Operators (Budapest, 1980), vols. I–II, Colloq. Math. Soc. János Bolyai, 35. North-Holland, Amsterdam, pp. 509–524 (1983)Google Scholar
- 14.Fell, J.M.G., Doran, R.S.: Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, vol. 1. Pure and Applied Mathematics, 125. Academic Press, Inc., Boston (1988)Google Scholar
- 15.Fendler G., Gröchenig K., Leinert M.: Convolution-dominated operators on discrete groups. Integral Equ. Oper. Theory 61(4), 493–509 (2008)CrossRefzbMATHGoogle Scholar
- 16.Georgescu V.: On the structure of the essential spectrum of elliptic operators on metric spaces. J. Funct. Anal. 260(6), 1734–1765 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
- 17.Georgescu V., Iftimovici A.: Crossed products of C*-algebras and spectral analysis of quantum Hamiltonians. Comm. Math. Phys. 228(3), 519–560 (2002)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 18.Gérard C., Martinez A., Sjöstrand J.: A mathematical approach to the effective Hamiltonian in perturbed periodic problems. Comm. Math. Phys. 142(2), 217–244 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 19.Girardi M., Weis L.: Integral operators with operator-valued kernels. J. Math. Anal. Appl. 290(1), 190–212 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 20.Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)Google Scholar
- 21.Halperin I.: Function spaces. Can. J. Math. 5, 273–288 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
- 22.Hulanicki A.: On the spectrum of convolution operators on groups with polynomial growth. Invent. Math. 17, 135–142 (1972)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 23.Kister J.M.: Uniform continuity and compactness in topological groups. Proc. Am. Math. Soc. 13, 37–40 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
- 24.Kurbatov, V.G.: Functional-Differential Operators and Equations. Mathematics and its Applications, vol. 473. Kluwer, Dordrecht (1999)Google Scholar
- 25.Kurbatov V.G.: Some algebras of operators majorized by a convolution. Funct. Differ. Equ. 8(3–4), 323–333 (2001)zbMATHMathSciNetGoogle Scholar
- 26.Leptin H.: Darstellungen verallgemeinerter L 1-Algebren. Invent. Math. 5, 192–215 (1968)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 27.Leptin H.: On symmetry of some Banach algebras. Pac. J. Math. 53, 203–206 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
- 28.Leptin H., Poguntke D.: Symmetry and nonsymmetry for locally compact groups. J. Funct. Anal. 33(2), 119–134 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
- 29.Neeb K.-H.: On differentiable vectors for representations of infinite dimensional Lie groups. J. Funct. Anal. 259(11), 2814–2855 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
- 30.Palmer, Th.W.: Banach Algebras and the General Theory of *-Algebras, vol. 2. Encyclopedia of Mathematics and its Applications, 79. Cambridge University Press, Cambridge (2001)Google Scholar
- 31.Paterson, A.L.T.: Amenability. Mathematical Surveys and Monographs, 29. American Mathematical Society, Providence (1988)Google Scholar
- 32.Pedersen, G.K.: C*-algebras and Their Automorphism Groups. London Mathematical Society Monographs, 14. Academic Press, Inc., London (1979)Google Scholar
- 33.Poguntke D.: Rigidly symmetric L 1-group algebras. Sem. Sophus Lie 2(2), 189–197 (1992)zbMATHMathSciNetGoogle Scholar
- 34.Rabinovich V.S., Roch S.: The essential spectrum of Schrdinger operators on lattices. J. Phys. A 39(26), 8377–8394 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 35.Takai H.: On a duality for crossed products of C*-algebras. J. Funct. Anal. 19, 25–39 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
- 36.Vallin J.-M.: C*-algèbres de Hopf et C*-algèbres de Kac. Proc. Lond. Math. Soc. (3) 50(1), 131–174 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
- 37.Williams, D.P.: Crossed Products of C*-Algebras. Mathematical Surveys and Monographs, 134. American Mathematical Society, Providence, RI (2007)Google Scholar
Copyright information
© Springer Basel 2014