Advertisement

Annales Henri Poincaré

, Volume 16, Issue 1, pp 45–97 | Cite as

On the Atomic Orbital Magnetism: A Rigorous Derivation of the Larmor and Van Vleck Contributions

  • Baptiste SavoieEmail author
Article

Abstract

The purpose of this paper is to rigorously investigate the orbital magnetism of core electrons in three-dimensional crystalline ordered solids and in the zero-temperature regime. To achieve that, we consider a non-interacting Fermi gas subjected to an external periodic potential modeling the crystalline field within the tight-binding approximation (i.e., when the distance between two consecutive ions is large). For a fixed number of particles in the Wigner–Seitz cell and in the zero-temperature limit, we derive an asymptotic expansion for the bulk zero-field orbital susceptibility. We prove that the leading term is the superposition of the Larmor diamagnetic contribution, generated by the quadratic part of the Zeeman Hamiltonian, together with the ‘complete’ orbital Van Vleck paramagnetic contribution, generated by the linear part of the Zeeman Hamiltonian, and related to field-induced electronic transitions.

Keywords

Magnetic Susceptibility Asymptotic Expansion Resolvent Operator Canonical Condition Seitz Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Angelescu N., Bundaru M., Nenciu G.: On the Landau diamagnetism. Commun. Math. Phys. 42(1), 9–28 (1975)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Angelescu N., Corciovei A.: On free quantum gases in a homogeneous magnetic field. Rev. Roum. Phys. 20, 661–671 (1975)MathSciNetGoogle Scholar
  3. 3.
    Ashcroft N.W., Mermin N.D.: Solid State Physics. Saunders College Publishing, New York (1976)Google Scholar
  4. 4.
    Assis A.K.T., Wiederkehr K.H., Wolfschmidt G.: Webers’s Planetary Model of the Atom. Tredition Science, Hamburg (2011)Google Scholar
  5. 5.
    Avron J., Herbst I., Simon B.: Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 45(4), 847–883 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Berezin F.A., Shubin M.A.: The Schrödinger Equation. Kluwer Academic Publishers, Dordrecht (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Briet P., Cornean H.D.: Locating the spectrum for magnetic Schrödinger and Dirac operators. Commun. Partial Differ. Equ.27(5–6), 1079–1101 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Briet P., Cornean H.D., Louis D.: Diamagnetic expansions for perfect quantum gases. J. Math. Phys. 47(8), 083511 (2006)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Briet P., Cornean H.D., Louis D.: Diamagnetic expansions for perfect quantum gases II: uniform bounds. Asymptot. Anal. 59(1–2), 109–123 (2008)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Briet P., Cornean H.D., Savoie B.: Diamagnetism of quantum gases with singular potentials. J. Phys. A Math. Theor. 43(47), 474008 (2010)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Briet P., Cornean H.D., Savoie B.: A rigorous proof of the Landau–Peierls formula and much more. Ann. Henri Poincaré 13(1), 1–40 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Briet P., Savoie B.: A rigorous approach to the magnetic response in disordered systems. Rev. Math. Phys. 24(8), 1250022 (2012)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Cornean H.D.: On the essential spectrum of two-dimensional periodic magnetic Schrödinger operators. Lett. Math. Phys. 49(3), 197–211 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Cornean H.D.: On the magnetization of a charged Bose gas in the canonical ensemble. Commun. Math. Phys. 212(1), 1–27 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Cornean H.D.: On the Lipschitz continuity of spectral bands of Harper-like and magnetic Schrödinger operators. Ann. Henri Poincaré 11(5), 973–990 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Cornean, H.D., Fournais, S., Frank, R., Hellfer, B.: Sharp trace asymptotics for a class of 2D-magnetic operators. Preprint arXiv:1108.0777Google Scholar
  17. 17.
    Cornean H.D., Nenciu G.: Two dimensional magnetic Schrödinger operators: width of minibands in the tight-binding approximation. Ann. Henri Poincaré 1(2), 203–222 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Cornean H.D., Nenciu G.: The Faraday effect revisited: thermodynamic limit. J. Funct. Anal. 257(7), 2024–2066 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Cornean H.D., Nenciu G., Pedersen T.G.: The Faraday effect revisited: general theory. J. Math. Phys. 47(1), 013511 (2006)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Combescure M., Robert D.: Rigorous semiclassical results for the magnetic response of an electron gas. Rev. Math. Phys. 13(9), 1055–1073 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Daumer F.: Equation de Schrödinger avec champ électrique périodique et champ magnétique constant dans l’approximation du tight-binding. Commun. Partial Differ. Equ. 18(5–6), 1021–1041 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Feshbach H.: Unified theory of nuclear reactions. Annals of Physics 5(4), 357–390 (1958)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Fournais S.: The magnetisation of large atoms in strong magnetic fields. Commun. Math. Phys. 216(2), 375–393 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Fournais S.: On the semiclassical asymptotics of the current and magnetic moment of a non-interacting electron gas at zero temperature in a strong constant magnetic field. Ann. Henri Poincaré 2(6), 1189–1212 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Fournais S.: On the total magnetic moment of large atoms in strong magnetic fields. Lett. Math. Phys. 59(1), 33–45 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Fournais S., Helffer B.: Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and Their Applications, vol. 77. Birkhäuser, Boston (2010)Google Scholar
  27. 27.
    Galloonov G.V., Oleinik V.L., Pavlov B.S.: Estimations for negative spectral bands of three-dimensional periodical Schrödinger operator. J. Math. Phys. 34(3), 936–942 (1993)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Helffer B., Mohamed A.: Asymptotics of the density of states for the Schrödinger operator with periodic electric potential. Duke Math. J. 92(1), 1–60 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Helffer B., Sjöstrand J.: Equation de Schrödinger avec champ magnétique et équation de Harper. Lect. Notes Phys. 345, 118–197 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    Helffer B., Sjöstrand J.: On diamagnetism and the de Haas–van Alphen effect. Ann. de l’I.H.P., Sect. Phys. théor. 52(4), 303–375 (1990)zbMATHGoogle Scholar
  31. 31.
    Huang K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)zbMATHGoogle Scholar
  32. 32.
    Hupfer T., Leschke H., Müller P., Warzel S.: Existence and uniqueness of the integrated density of states for Schrödinger operators with magnetic fields and unbounded random potentials. Rev. Math. Phys. 13(12), 1547–1581 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Iftimie V.: Décroissance exponentielle des fonctions propres des opérateurs de Schrödinger avec des champs magnétiques. Bull. Sci. Math. 120, 445–471 (1996)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Iftimie V., Purice R.: Eigenfunctions decay for magnetic pseudodifferential operators. J. Math. Phys. 52, 093709 (2011)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    Kato T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1976)CrossRefzbMATHGoogle Scholar
  36. 36.
    Langevin P.: Sur la théorie du magnétisme. C.R. Acad. Sci. (Paris) 139, 1204 (1905)zbMATHGoogle Scholar
  37. 37.
    Langevin P.: Sur la théorie du magnétisme. J. Phys. Theor. Appl. 4(1), 678–693 (1905)CrossRefzbMATHGoogle Scholar
  38. 38.
    Langevin P.: Magnétisme et théorie des électrons. Ann. de Chim. et de Phys. 5, 70–127 (1905)zbMATHGoogle Scholar
  39. 39.
    Nenciu G.: Stability of energy gaps under variations of the magnetic field. Lett. Math. Phys. 11(2), 127–132 (1986)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Nenciu G.: Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians. Rev. Mod. Phys. 63(1), 91–127 (1991)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    Nenciu G.: On asymptotic perturbation theory for quantum mechanics: almost invariant subspaces and gauge invariant magnetic perturbation theory. J. Math. Phys. 43(3), 1273–1298 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Pauli W. Jr: Theoretische Bemerkungen über den Diamagnetismus einatomiger Gase. Zeitschrift für Physik 2(3), 201–205 (1920)ADSCrossRefGoogle Scholar
  43. 43.
    Reed M., Simon B.: Methods of Modern Mathematical Physics, II : Fourier Analysis, Self-Adjointness. Academic Press, Inc., San Diego (1975)zbMATHGoogle Scholar
  44. 44.
    Reed M., Simon B.: Methods of Modern Mathematical Physics, IV : Analysis of Operators. Academic Press, Inc., San Diego (1978)zbMATHGoogle Scholar
  45. 45.
    Savoie, B.: Diamagnétisme des gaz quantiques quasi-parfaits. Ph.D. Dissertation, Université d’Aix-Marseille II, Marseille (2010)Google Scholar
  46. 46.
    Savoie B.: On the zero-field orbital magnetic susceptibility of Bloch electrons in graphene-like solids: some rigorous results. J. Math. Phys. 53, 073302 (2012)ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7 (3), 447–526 (1982). Erratum:ibid. 11(2), 426–426 (1984)Google Scholar
  48. 48.
    Van Leeuwen H.-J.: Problèmes de la théorie électronique du magnétisme. J. Phys. Radium 2, 361–377 (1921)CrossRefGoogle Scholar
  49. 49.
    Van Vleck J.H.: On dielectric constants and magnetic susceptibilities in the new quantum mechanics part I. A general proof of the Langevin–Debye formula. Phys. Rev. 29(5), 727–744 (1927)ADSCrossRefzbMATHGoogle Scholar
  50. 50.
    Van Vleck J.H.: On dielectric constants and magnetic susceptibilities in the new quantum mechanics. Part II—application to dielectric constants. Phys. Rev. 30(1), 31–54 (1927)ADSCrossRefGoogle Scholar
  51. 51.
    Van Vleck J.H.: On dielectric constants and magnetic susceptibilities in the new quantum mechanics part III—application to dia- and paramagnetism. Phys. Rev. 31(4), 587–613 (1928)ADSCrossRefMathSciNetGoogle Scholar
  52. 52.
    Van Vleck J.H.: The Theory of Electric and Magnetic Susceptibilities. Clarendon Press, Oxford (1932)zbMATHGoogle Scholar
  53. 53.
    Wilcox C.H.: Theory of Bloch waves. J. Anal. Math. 33(1), 146–167 (1978)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© European Union 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of AarhusÅrhus CDenmark

Personalised recommendations