Reflection Positivity for Majoranas
Article
First Online:
- 181 Downloads
- 10 Citations
Abstract
We establish reflection positivity for Gibbs trace states defined by certain Hamiltonians that describe the interaction of Majoranas on a lattice. These Hamiltonians may include many-body interactions, as long as the signs of the associated coupling constants satisfy certain restrictions. We show that reflection positivity holds on an even sub-algebra of Majoranas.
Keywords
Minus Sign Quantum Spin System Reflection Positivity Heisenberg Interaction Continuous Symmetry Group
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full article text
References
- 1.Chesi S., Jaffe A., Loss D., Pedrocchi F.L.: Vortex loops and Majoranas. J. Math. Phys. 54, 112203 (2013). doi: 10.1063/1.4829273 ADSCrossRefMathSciNetGoogle Scholar
- 2.Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)ADSCrossRefMathSciNetGoogle Scholar
- 3.Fröhlich J.: Schwinger functions and their generating functionals. I. Helv. Phys. Acta. 47, 265–306 (1974)zbMATHGoogle Scholar
- 4.Fröhlich J., Simon B., Thomas S.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. Math. Phys. 50, 79–85 (1976)ADSCrossRefGoogle Scholar
- 5.Fröhlich J., Lieb E.H.: Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys. 60, 233–267 (1978)ADSCrossRefGoogle Scholar
- 6.Fröhlich J., Israel R., Lieb E.H., Simon B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)ADSCrossRefGoogle Scholar
- 7.Fröhlich J., Israel R., Lieb E.H., Simon B.: Phase transitions and reflection positivity. II. Short range lattice models and coulomb systems. J. Stat. Phys. 22, 297–347 (1980)ADSCrossRefGoogle Scholar
- 8.Glimm J., Jaffe A.: Quantum Physics, 2nd edn. Springer, New York (1987)CrossRefGoogle Scholar
- 9.Glimm J., Jaffe A., Spencer T.: Phase transitions for \({\phi^{4}_{2}}\) quantum fields. Commun. Math. Phys. 45, 203–216 (1975)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 10.Guerra, F., Rosen, L., Simon, B.: The P(ϕ)2 Euclidean quantum field theory as classical statistical mechanics I and II. Ann. Math. 101, 111–189; 191–259 (1975)Google Scholar
- 11.Jaffe, A., Pedrocchi, F.L.: Topological order and reflection positivity. http://arxiv.org/abs/1310.5370
- 12.Kitaev A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 13.Lieb Elliott H.: Flux phase of the half-filled band. Phys. Rev. Lett. 73, 2158–2161 (1994)ADSCrossRefGoogle Scholar
- 14.Macris N., Nachtergaele B.: On the flux phase conjecture at half-filling: an improved proof. J. Stat. Phys. 85, 745–761 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 15.Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. I and II. Commun. Math. Phys. 31, 83–112 (1973)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 16.Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 42, 281–305 (1975)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 17.Osterwalder K., Seiler E.: Gauge field theories on a lattice. Ann. Phys. 110, 440–471 (1978)ADSCrossRefMathSciNetGoogle Scholar
Copyright information
© Springer Basel 2014