Journal of Geometry

, 110:51 | Cite as

On the isomorphism types of Moebius–Kantor complexes

  • Sylvain Barré
  • Mikaël PichotEmail author


We study the isomorphism types of simply connected complexes with Moebius–Kantor links using a local invariant called the parity. We show that the parity can be computed explicitly in certain constructions arising from surgery.



The authors are grateful to the referees for helpful suggestions and corrections. The second author was partially supported by an NSERC discovery Grant No. 418144-12 and a JSPS award.


  1. 1.
    Barré, S.: Polyèdres de rang deux. Thèse, ENS Lyon, Lyon (1996) Google Scholar
  2. 2.
    Barré, S.: Immeubles de tits triangulaires exotiques. In: Annales de la Faculté des sciences de Toulouse: Mathématiques, vol. 9, pp. 575–603. Université Paul Sabatier, Toulouse (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barré, S., Pichot, M.: Sur les immeubles triangulaires et leurs automorphismes. Geom. Dedicata. 130(1), 71–91 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barré, S., Pichot, M.: Existence d’immeubles triangulaires quasi-périodiques. Math. Ann. 350(1), 227–242 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Barré, S., Pichot, M.: Intermediate rank and property RD. arXiv:0710.1514
  6. 6.
    Barré, S., Pichot, M.: Removing chambers in bruhat-tits buildings. Israel J. Math. 202, 117–160 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Barré, S., Pichot, M.: Surgery on discrete groups, preprint.Google Scholar
  8. 8.
    Barré, S., Pichot, M.: Random group cobordisms of rank \(\frac{7}{4}\), preprint.Google Scholar
  9. 9.
    Ronan, M.A.: A construction of buildings with no rank 3 residues of spherical type. In: Buildings and the Geometry of Diagrams, pp. 242–248. Springer, Berlin (1986)CrossRefGoogle Scholar
  10. 10.
    Ronan, M.A., Tits, J.: Building buildings. Math. Ann. 278(1–4), 291–306 (1987)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tits, J.: Buildings and \(BN\)-pairs of spherical type. Lecture Notes in Mathematics 386, (1974)Google Scholar
  12. 12.
    Tits, J.: Endliche spiegelungsgruppen, die als weylgruppen auftreten. Invent. Math. 43(3), 283–295 (1977)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tits, J.: A local approach to buildings. In: The Geometric Vein, pp. 519–547. Springer, Berlin (1981)CrossRefGoogle Scholar
  14. 14.
    Tits, J.: Spheres of radius 2 in triangle buildings. In: Finite Geometries Buildings and Related Topics. Pingrie Park Conference (1988)Google Scholar
  15. 15.
    Van Maldeghem, H.: Non-classical triangle buildings. Geom. Dedicata. 24(2), 123–206 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.UMR 6205, LMBA, UniversitÉ de Bretagne-SudVannesFrance
  2. 2.McGill University MontréalCanada

Personalised recommendations