Advertisement

Journal of Geometry

, 110:12 | Cite as

k-th generalized Tanaka–Webster Einstein real hypersurfaces in non-flat complex space forms

  • George KaimakamisEmail author
  • Konstantina Panagiotidou
  • Juan de Dios Pérez
Article
  • 12 Downloads

Abstract

In this paper the notion of k-th generalized Tanaka–Webster Einstein real hypersurfaces in non-flat complex space forms is introduced. Furthermore, three dimensional real hypersurfaces in non-flat complex space forms, which are k-th generalized Tanaka–Webster Einstein, are classified. Moreover, the notion of Ricci soliton for the k-th generalized Tanaka–Webster connection of a real hypersurface is also introduced and first results concerning the new notion and real hypersurfaces are provided. At the end of the paper, discussion and ideas of further research on the new notions is included.

Keywords

k-th generalized Tanaka–Webster Einstein Ricci soliton for k-th generalized Tanaka–Webster connection real hypersurface non-flat complex space forms 

Mathematics Subject Classification

53C15 53B25 

Notes

Acknowledgements

The authors would like to express their gratitude to the referee for valuable comments on improving the whole paper and Theorems 1.1 and 1.2.

References

  1. 1.
    Agricola, I., Ferreira, C.: Einstein manifolds with skew torsion. Q. J. Math. 65, 717–741 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berndt, J.: Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Angew. Math. 395, 132–141 (1989)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds, vol. 203. Progress in MathematicsBirkhauser Boston Inc., Boston (2002)CrossRefGoogle Scholar
  4. 4.
    Cecil, T.E., Ryan, P.J.: Geometry of Hypersurface. Springer Monographs in MathematicsSpringer, Berlin (2015)CrossRefGoogle Scholar
  5. 5.
    Cho, J.T.: Pseudo-Einstein CR-structures on real hypersurfaces of a complex space form. Hokkaido Math. J. 37, 1–17 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cho, J.T.: CR-structures on real hypersurfaces of a complex space form. Publ. Math. Debr. 54, 473–487 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cho, J.T., Kimura, M.: Ricci solitons of compact real hypersurfaces in Kähler manifolds. Math. Nachr. 284, 1385–1393 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cho, J.T., Kimura, M.: Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. 61, 205–212 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ivey, T., Ryan, P.J.: Hopf hypersurfaces of small Hopf principal curvature in  \(\mathbb{C}H^{2}\). Geom. Dedicata 141, 147–161 (2009)Google Scholar
  10. 10.
    Ki, U.-H., Suh, Y.J.: On real hypersurfaces of a complex space form. Math. J. Okayama Univ. 32, 207–221 (1990)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kim, H.S., Ryan, P.J.: A classification of pseudo-Einstein hypersurfaces in  \(\mathbb{C}P^{2}\). Diff. Geom. Appl. 26, 106–112 (2008)Google Scholar
  12. 12.
    Kon, M.: On the Ricci tensor and the generalized Tanaka–Webster connection of real hypersurfaces in a complex space form. Publ. Math. Debr. 82, 531–548 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kon, M.: Pseudo-Einstein real hypersurfaces in complex space forms. J. Diff. Geom. 14, 339–354 (1979)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Jpn. 28, 529–540 (1976)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Montiel, S.: Real hypersurfaces od a complex hyperbolic space. J. Math. Soc. Jpn. 35, 515–535 (1985)CrossRefGoogle Scholar
  16. 16.
    Niebergall, R., Ryan, P.J.: Real hypersurfaces in complex space forms. Math. Sci. Res. Inst. Publ. 32, 233–305 (1997)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Panagiotidou, K., Xenos, P.J.: Real hypersurfaces in \(\mathbb{C}P^{2}\) and \(\mathbb{C}H^{2}\) whose structure Jacobi operator is Lie \(\mathbb{D}\)-parallel. Note Mat. 32, 89–99 (2012)Google Scholar
  18. 18.
    Takagi, R.: Real hypersurfaces in complex projective space with constant principal curvatures. J. Math. Soc. Jpn. 27, 43–53 (1975)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Takagi, R.: On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10, 495–506 (1973)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Am. Math. Soc. 314, 349–379 (1989)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and Engineering SciencesHellenic Army AcademyVari, AttikiGreece
  2. 2.Section of MathematicsHellenic Naval AcademyAthensGreece
  3. 3.Departamento de Geometria y TopologiaUniversidad de GranadaGranadaSpain

Personalised recommendations