Journal of Geometry

, 110:10 | Cite as

Packing of odd squares revisited

  • Antal JoósEmail author
  • Vojtech Bálint


It is known that \(\sum \nolimits _{i =1}^\infty {1/ (2i+1)^2}={\pi ^2/8}-1\). We can ask what is the smallest \(\epsilon \ge 0\) such that all squares of sides 1 / 3, 1 / 5, 1 / 7,...can be packed into a rectangle of area \({\pi ^2/8}-1+\epsilon \). We show that the proof of Paulhus\('\) key Lemma for the best known result is false and we give new upper estimate \(\epsilon <4.43\times 10^{-10}\).


Square packing Rectangle Smallest area 

Mathematics Subject Classification

52C15 52C20 



  1. 1.
    Bálint, V.: Two packing problems. Discrete Math. 178, 233–236 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bálint, V.: Small selection of old open packing problems. Pollack Period. Int. J. Eng. Inf. Sci. 1, 21–28 (2012)CrossRefGoogle Scholar
  3. 3.
    Brass, P., Moser, W.O.J., Pach, J.: Research Problems in Discrete Geometry, pp. 121–122. Springer, New York (2005)zbMATHGoogle Scholar
  4. 4.
    Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved Problems in Geometry, pp. 112–113. Springer, New York (1991)CrossRefGoogle Scholar
  5. 5.
    Jennings, D.: On packings of squares and rectangles. Discrete Math. 138, 293–300 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Joós, A.: On packing of squares in a rectangle. In: Discrete Geometry Fest. Rényi Institute, Budapest (2017).
  7. 7.
    Meir, A., Moser, L.: On packing of squares and cubes. J. Combin. Theory Ser. A 5, 126–134 (1968)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Paulhus, M.M.: An algorithm for packing squares. J. Combin. Theory Ser. A 82, 147–157 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of DunaújvárosDunaújvárosHungary
  2. 2.University of ZilinaŽilinaSlovakia

Personalised recommendations