Advertisement

Journal of Geometry

, 110:7 | Cite as

On the model flexibility of Siamese dipyramids

  • V. GorkavyyEmail author
  • I. Fesenko
Article
  • 22 Downloads

Abstract

Polyhedra called Siamese dipyramids are known to be non-flexible, however their physical models behave like physical models of flexible polyhedra. We discuss a simple mathematical method for explaining the model flexibility of the Siamese dipyramids.

Keywords

Siamese dipyramids flexible polyhedron model flexor 

Mathematics Subject Classification

Primary 52B10 Secondary 52C25 

Notes

References

  1. 1.
    Connelly, R.: A counterexample to the rigidity conjecture for polyhedra. Publications Mathematiques de l’IHES 47, 333–338 (1997)CrossRefGoogle Scholar
  2. 2.
    Connelly, R.: Rigidity. Handbook of Convex Geometry, vol. A, pp. 223–271. North-Holland, Amsterdam (1993)CrossRefGoogle Scholar
  3. 3.
    Connelly, R.: The rigidity of certain cabled frameworks and the second-order rigidity of arbitrarily triangulated convex surface. Adv. Math. 31, 212–299 (1980)zbMATHGoogle Scholar
  4. 4.
    Cromwell, P.: Polyhedra. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  5. 5.
    Fuchs, D., Tabachnikov, S.: Mathematical Omnibus: Thirty Lectures on Classic Mathematics. American Mathematical Society, Providence (2007)CrossRefGoogle Scholar
  6. 6.
    Gorkavyy, V., Kalinin, D.: On model flexibility of the Jessen orthogonal icosahedron. Contrib. Algebra Geom. 57, 607–622 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gluck, H.: Almost all simply connected surfaces are rigid. Geometric Topology. Lecture Notes in Mathematics, vol. 438, pp. 225–239. Springer, Berlin/New York (1975)Google Scholar
  8. 8.
    Goldberg, M.: Unstable polyhedral structures. Math. Mag. 51, 165–170 (1978)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Milka, A.D.: Nonrigid star-like bipiramids of A.D. Alexandrov and S.M. Vladimirova. Sib. Adv. Math. 12(2), 56–72 (2002)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Milka, A.D.: Bendings of surfaces, bifurcations of dynamical systems, and the stability of shells. Chebyshevskii Sbornik 7(2), 109–144 (2006)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Milka, A.D.: Linear bendings of star-like bipyramids. C.R. Mecanique 331, 805–810 (2003)CrossRefGoogle Scholar
  12. 12.
    Milka, A.D.: Linear bendings of star-like bipyramids. Eur. J. Comb. 31, 1050–1064 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pogorelov, A.V.: Bendings of Surfaces and Stability of Shells. Translations of Mathematical Monographs, vol. 72. American Mathematical Society, Providence (1988)CrossRefGoogle Scholar
  14. 14.
    Wunderlich, W.: Snapping and shaky antiprisms. Math. Mag. 52, 235–236 (1979)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringKharkivUkraine
  2. 2.V. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations