Journal of Geometry

, 110:7 | Cite as

On the model flexibility of Siamese dipyramids

  • V. GorkavyyEmail author
  • I. Fesenko


Polyhedra called Siamese dipyramids are known to be non-flexible, however their physical models behave like physical models of flexible polyhedra. We discuss a simple mathematical method for explaining the model flexibility of the Siamese dipyramids.


Siamese dipyramids flexible polyhedron model flexor 

Mathematics Subject Classification

Primary 52B10 Secondary 52C25 



  1. 1.
    Connelly, R.: A counterexample to the rigidity conjecture for polyhedra. Publications Mathematiques de l’IHES 47, 333–338 (1997)CrossRefGoogle Scholar
  2. 2.
    Connelly, R.: Rigidity. Handbook of Convex Geometry, vol. A, pp. 223–271. North-Holland, Amsterdam (1993)CrossRefGoogle Scholar
  3. 3.
    Connelly, R.: The rigidity of certain cabled frameworks and the second-order rigidity of arbitrarily triangulated convex surface. Adv. Math. 31, 212–299 (1980)zbMATHGoogle Scholar
  4. 4.
    Cromwell, P.: Polyhedra. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  5. 5.
    Fuchs, D., Tabachnikov, S.: Mathematical Omnibus: Thirty Lectures on Classic Mathematics. American Mathematical Society, Providence (2007)CrossRefGoogle Scholar
  6. 6.
    Gorkavyy, V., Kalinin, D.: On model flexibility of the Jessen orthogonal icosahedron. Contrib. Algebra Geom. 57, 607–622 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gluck, H.: Almost all simply connected surfaces are rigid. Geometric Topology. Lecture Notes in Mathematics, vol. 438, pp. 225–239. Springer, Berlin/New York (1975)Google Scholar
  8. 8.
    Goldberg, M.: Unstable polyhedral structures. Math. Mag. 51, 165–170 (1978)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Milka, A.D.: Nonrigid star-like bipiramids of A.D. Alexandrov and S.M. Vladimirova. Sib. Adv. Math. 12(2), 56–72 (2002)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Milka, A.D.: Bendings of surfaces, bifurcations of dynamical systems, and the stability of shells. Chebyshevskii Sbornik 7(2), 109–144 (2006)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Milka, A.D.: Linear bendings of star-like bipyramids. C.R. Mecanique 331, 805–810 (2003)CrossRefGoogle Scholar
  12. 12.
    Milka, A.D.: Linear bendings of star-like bipyramids. Eur. J. Comb. 31, 1050–1064 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pogorelov, A.V.: Bendings of Surfaces and Stability of Shells. Translations of Mathematical Monographs, vol. 72. American Mathematical Society, Providence (1988)CrossRefGoogle Scholar
  14. 14.
    Wunderlich, W.: Snapping and shaky antiprisms. Math. Mag. 52, 235–236 (1979)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringKharkivUkraine
  2. 2.V. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations