Advertisement

Journal of Geometry

, 110:5 | Cite as

Classification of large partial plane spreads in \({{\,\mathrm{PG}\,}}(6,2)\) and related combinatorial objects

  • Thomas Honold
  • Michael KiermaierEmail author
  • Sascha Kurz
Article
Part of the following topical collections:
  1. Karzel Anniversary Topical Collection

Abstract

The partial plane spreads in \({{\,\mathrm{PG}\,}}(6,2)\) of maximum possible size 17 and of size 16 are classified. Based on this result, we obtain the classification of the following closely related combinatorial objects: vector space partitions of \({{\,\mathrm{PG}\,}}(6,2)\) of type \((3^{16} 4^1)\), binary \(3\times 4\) MRD codes of minimum rank distance 3, and subspace codes with the optimal parameters \((7,17,6)_2\) and \((7,34,5)_2\).

Mathematics Subject Classification

05B25 15A21 20B25 51E14 51E20 94B60 

Notes

Acknowledgements

We thank the anonymous referees for their suggestions and careful reading. The authors would like to acknowledge the financial support provided by COST—European Cooperation in Science and Technology. The first author was also supported by the National Natural Science Foundation of China under Grant 61571006. The second and the third author are members of the Action IC1104 Random Network Coding and Designs over GF(q). The third author was supported in part by the Grant KU 2430/3-1—Integer Linear Programming Models for Subspace Codes and Finite Geometry from the German Research Foundation.

References

  1. 1.
    Beutelspacher, A.: Partial spreads in finite projective spaces and partial designs. Math. Z. 145(3), 211–229 (1975)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Braun, M., Kiermaier, M., Wassermann, A.: Computational methods in subspace designs. In: Greferath, M., Pavčević, M.O., Silberstein, N., Vázquez-Castro, M.A. (eds.) Network Coding and Subspace Designs, Signals and Communication Theory, pp. 213–244. Springer, Cham (2018)CrossRefGoogle Scholar
  4. 4.
    Braun, M., Kiermaier, M., Wassermann, A.: \(q\)-analogs of designs: subspace designs. In: Greferath, M., Pavčević, M.O., Silberstein, N., Vázquez-Castro, M.A. (eds.) Network Coding and Subspace Designs, Signals and Communication Theory, pp. 171–211. Springer, Cham (2018)CrossRefGoogle Scholar
  5. 5.
    de la Cruz, J., Kiermaier, M., Wassermann, A., Willems, W.: Algebraic structures of MRD codes. Adv. Math. Commun. 10(3), 499–510 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Delsarte, Ph: Bilinear forms over a finite field, with applications to coding theory. J. Combin. Theory Ser. A 25(3), 226–241 (1978)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dodunekov, S, Simonis, J: Codes and projective multisets. Electron. J. Combin. 5, #R37 (1998)Google Scholar
  8. 8.
    Eisfeld, J., Storme, L.: (Partial) \(t\)-spreads and minimal \(t\)-covers in finite projective spaces. Lecture notes, Ghent University (2000)Google Scholar
  9. 9.
    El-Zanati, S., Heden, O., Seelinger, G., Sissokho, P., Spence, L., Vanden Eynden, C.: Partitions of the 8-dimensional vector space over GF(2). J. Combin. Des. 18(6), 462–474 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    El-Zanati, S., Jordon, H., Seelinger, G., Sissokho, P., Spence, L.: The maximum size of a partial 3-spread in a finite vector space over GF(2). Des. Codes Cryptogr. 54(2), 101–107 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Etzion, T., Silberstein, N.: Codes and designs related to lifted MRD codes. IEEE Trans. Inf. Theory 59(2), 1004–1017 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Etzion, T., Storme, L.: Galois geometries and coding theory. Des. Codes Cryptogr. 78(1), 311–350 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Etzion, T., Vardy, A.: Error-correcting codes in projective spaces. IEEE Trans. Inf. Theory 57(2), 1165–1173 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Feulner, Thomas: The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes. Adv. Math. Commun. 3(4), 363–383 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Feulner, T.: Canonical forms and automorphisms in the projective space (2013). arXiv:1305.1193
  16. 16.
    Feulner, T.: Eine kanonische Form zur Darstellung äquivalenter Codes – Computergestützte Berechnung und ihre Anwendung in der Codierungstheorie, Kryptographie und Geometrie. PhD thesis, Universität Bayreuth (2013)Google Scholar
  17. 17.
    Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21(1), 1–12 (1985)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gordon, N.A., Shaw, R., Soicher, L.H.: Classification of partial spreads in \(\text{PG}(4,2)\) (2004). www.maths.qmul.ac.uk/~leonard/partialspreads/PG42new.pdf
  19. 19.
    Heden, O.: On the length of the tail of a vector space partition. Discrete Math. 309(21), 6169–6180 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Heden, O.: A survey of the different types of vector space partitions. Discrete Math. Algorithms Appl. 4(1), 1250001 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Heinlein, D.: New LMRD bounds for constant dimension codes and improved constructions (2018). arXiv:1801.04803
  22. 22.
    Heinlein, D., Honold, T., Kiermaier, M., Kurz, S., Wassermann, A.: Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6. arXiv:1711.06624.  https://doi.org/10.1007/s10623-018-0544-8. To appear in Des. Codes Cryptogr. MathSciNetCrossRefGoogle Scholar
  23. 23.
    Heinlein, D., Kiermaier, M., Kurz, S., Wassermann, A.: Tables of subspace codes (2016). arXiv:1601.02864
  24. 24.
    Heinlein, D., Kurz, S.: Coset construction for subspace codes. IEEE Trans. Inf. Theory 63(12), 7651–7660 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Heinlein, D., Kurz, S.: An upper bound for binary subspace codes of length \(8\), constant dimension 4 and minimum distance 6. Accepted paper at The Tenth International Workshop on Coding and Cryptography, Sept 18–22 2017, Saint-Petersburg (2017)Google Scholar
  26. 26.
    Hirschfeld, J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford Mathematical MonographsThe Clarendon Press, Oxford University Press, New York (1998)zbMATHGoogle Scholar
  27. 27.
    Hitotumatu, H., Noshita, K.: A technique for implementing backtrack algorithms and its application. Inf. Process. Lett. 8(4), 174–175 (1979)CrossRefGoogle Scholar
  28. 28.
    Hong, S.J., Patel, A.M.: A general class of maximal codes for computer applications. IEEE Trans. Comput. C–21(12), 1322–1331 (1972)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Honold, T., Kiermaier, M., Kurz, S.: Optimal binary subspace codes of length \(6\), constant dimension \(3\) and minimum subspace distance \(4\). In: Kyureghyan, G., Mullen, G.L., Pott, A. (eds.) Topics in Finite Fields, Number 632 in Contemporary Mathematics, pp. 157–176. American Mathematical Society, Providence (2015)Google Scholar
  30. 30.
    Honold, T., Kiermaier, M., Kurz, S.: Constructions and bounds for mixed-dimension subspace codes. Adv. Math. Commun. 10(3), 649–682 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Honold, T., Kiermaier, M., Kurz, S.: Partial spreads and vector space partitions. In: Greferath, M., Pavčević, M.O., Silberstein, N., Vázquez-Castro, M.A. (eds.) Network Coding and Subspace Designs, Signals and Communication Theory, pp. 131–170. Springer, Cham (2018)CrossRefGoogle Scholar
  32. 32.
    Honold, T., Landjev, I.: Linear codes over finite chain rings. Electron. J. Combin. 7, #R11 (2000)Google Scholar
  33. 33.
    Horlemann-Trautmann, A.-L., Marshall, K.: New criteria for MRD and Gabidulin codes and some rank-metric code constructions. Adv. Math. Commun. 11(3), 533–548 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Hua, L.-K.: A theorem on matrices over a sfield and its applications. Acta Math. Sinica 1, 109–163 (1951)MathSciNetGoogle Scholar
  35. 35.
    Kaski, P., Pottonen, O.: Libexact user’s guide version 1.0. technical report 2008-1. Helsinki University of Technology (2008)Google Scholar
  36. 36.
    Kiermaier, M., Laue, R.: Derived and residual subspace designs. Adv. Math. Commun. 9(1), 105–115 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Knuth, D.E.: Dancing links. In: Roscoe, A.W., Davies, J., Woodcock, J. (eds.) Millennial Perspectives in Computer Science, Cornerstones of Computing, pp. 187–214. Palgrave, Oxford (2000)Google Scholar
  38. 38.
    Kötter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kshevetskiy, A., Gabidulin, E.: The new construction of rank codes. In: Proceedings of the IEEE international symposium on information theory (ISIT), 2005, pp. 2105–2108 (2005)Google Scholar
  40. 40.
    Kurz, Sascha: Improved upper bounds for partial spreads. Des. Codes Cryptogr. 85(1), 97–106 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Kurz, S.: Packing vector spaces into vector spaces. Australas. J. Combin. 68(1), 122–130 (2017)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Liebhold, D., Nebe, Gabriele: Automorphism groups of Gabidulin-like codes. Arch. Math. 107(4), 355–366 (2016)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Mateva, Z.T., Topalova, S.T.: Line spreads of \(\text{ PG }(5,2)\). J. Combin. Des. 17(1), 90–102 (2009)Google Scholar
  44. 44.
    Năstase, E., Sissokho, Papa: The maximum size of a partial spread in a finite projective space. J. Combin. Theory Ser. A 152, 353–362 (2017)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Niskanen, S., Östergård, P.R.J.: Cliquer user’s guide, version 1.0. technical report T48. Helsinki University of Technology (2003)Google Scholar
  46. 46.
    Roth, Ron M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37(2), 328–336 (1991)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Seelinger, G., Sissokho, P., Spence, L., Vanden Eynden, C.: Partitions of finite vector spaces over \(\text{ GF }(2)\) into subspaces of dimensions \(2\) and \(s\). Finite Fields Appl. 18(6), 1114–1132 (2012)Google Scholar
  48. 48.
    Segre, B.: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Math. Pura Appl. (4) 64(1), 1–76 (1964)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Shaw, R.: Subsets of \(\text{ PG }(n,2)\) and maximal partial spreads in \(\text{ PG }(4,2)\). Des. Codes Cryptogr. 21(1–3), 209–222 (2000)Google Scholar
  50. 50.
    Sheekey, J.: A new family of linear maximum rank distance codes. Adv. Math. Commun. 10(3), 475–488 (2016)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Silva, D., Kschischang, F.R., Kötter, R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Wan, Z.-X.: A proof of the automorphisms of linear groups over a sfield of characteristic 2. Sci. Sinica 11, 1183–1194 (1962)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Wan, Z.-X.: Geometry of Matrices. World Scientific, Singapore (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Information and Electronic EngineeringZhejiang UniversityHangzhouChina
  2. 2.Mathematisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations