The cone metric of a Busemann space
Article
First Online:
Received:
Revised:
- 22 Downloads
Abstract
We introduce a metric \(d_c\) on the Busemann space (X, d) such that the horofunction compactification of the space \((X, d_c)\) is equivalent to the geodesic compactification of the initial space. The space \((X, d_c)\) is not geodesic in general. It is shown that \((X, d_c)\) is geodesic if and only if X is a real tree.
Keywords
Busemann space cone metric geodesic compactificationMathematics Subject Classification
Primary 53C23 Secondary 53C70References
- 1.Andreev, P.: Semilinear metric semilattices on \(\,\mathbb{R}\) -trees. Russian Math. (Iz. VUZ) 51(6), 1–10 (2007)Google Scholar
- 2.Andreev, P.: Geometry of ideal boundaries of geodesic spaces with nonpositive curvature in the sense of Busemann. Sib. Adv. Math. 18(2), 95–102 (2008)CrossRefGoogle Scholar
- 3.Ball, B.J., Yokura, S.: Compactifications determined by subsets of \(\,C^\ast (X)\). Topology Appl. 13(1), 1–13 (1982)Google Scholar
- 4.Birkhoff, G.: Lattice Theory. American Mathematical Society, New York (1940)CrossRefMATHGoogle Scholar
- 5.Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren Math. Wiss., vol. 319. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
- 6.Busemann, H.: The Geometry of Geodesics. Academic Press Inc., New York (1955)MATHGoogle Scholar
- 7.Chandler, R.E.: Hausdorff compactifications. Lecture Notes in Pure and Applied Mathematics, vol. 23. Marcel Dekker Inc, New York (1976)Google Scholar
- 8.Gillman, L., Jerison, M.: Rings of continuous functions. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton (1960)Google Scholar
- 9.Gromov, M.: Hyperbolic manifolds, groups and actions. In: Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, NY, 1978), pp. 183–213, Ann. Math. Stud., 97, Princeton University Press, Princeton, NJGoogle Scholar
- 10.Hotchkiss, P.K.: The boundary of a Busemann space. Proc. Am. Math. Soc. 125(7), 1903–1912 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 11.Papadopoulos, A.: Metric spaces, convexity and non-positive curvature. Second edition, IRMA Lectures in Mathematics and Theoretical Physics, 6, EMS, Zürich (2014)Google Scholar
- 12.Rieffel, M.: Group \(\,C^\ast \) -algebras as compact quantum metric spaces. Doc. Math. 7, 605–651 (2002)Google Scholar
- 13.Walsh, C.: Horofunction boundary of finite-dimensional normed space. Math Proc. Camb. Philos. Soc. 142(3), 497–507 (2007)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018