Advertisement

Standing Lattice Wave Patterns of a Boussinesq System

  • Shenghao LiEmail author
  • Min Chen
  • Bingyu Zhang
Article

Abstract

We prove the existence of a large family of two-dimensional standing waves that are triple periodic for a Boussinesq system which describes two-way propagation of water waves in a channel. Our proof uses the Lyapunov–Schmidt method to find the bifurcation standing waves.

Notes

Acknowledgements

We gratefully acknowledge the reviewer for his careful reading and many insightful comments and suggestions.

Compliance with ethical standards

Conflicts of interest

The authors declared that they have no conflicts of interest to this work.

References

  1. 1.
    Bona, J., Chen, M., Saut, J.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory. J. Nonlinear Sci. 12(4), 283–318 (2002)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bona, J., Chen, M., Saut, J.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II. The nonlinear theory. Nonlinearity 17(3), 925–952 (2004)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bona, J., Colin, T., Lannes, D.: Long wave approximations for water waves. Arch. Ration. Mech. Anal. 178(3), 373–410 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, M., Iooss, G.: Standing waves for a two-way model system for water waves. Eur. J. Mech. B/Fluids 24(1), 113–124 (2005)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, M., Iooss, G.: Periodic wave patterns of two-dimensional Boussinesq systems. Eur. J. Mech. B/Fluids 25(4), 393–405 (2006)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, M., Iooss, G.: Asymmetric periodic traveling wave patterns of two-dimensional Boussinesq systems. Phys. D Nonlinear Phenom. 237(10), 1539–1552 (2008)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Conway, J., Sloane, N.: Sphere Packings, Lattices and Groups, vol. 290. Springer, Berlin (2013)Google Scholar
  8. 8.
    Hahn, T., Shmueli, U., Arthur, J.W. (eds.): International Tables for Crystallography, vol. 1. Reidel, Dordrecht (1983)zbMATHGoogle Scholar
  9. 9.
    Hammack, J., Mccallister, D., Scheffner, N., Segur, H.: Two-dimensional periodic waves in shallow water. part 2. Asymmetric waves. J. Fluid Mech. 285, 95–122 (1995)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Hammack, J., Scheffner, N., Segur, H.: Two-dimensional periodic waves in shallow water. J. Fluid Mech. 209, 567–589 (1989)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Haragus, M., Iooss, G.: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems. Springer, Berlin (2010)zbMATHGoogle Scholar
  12. 12.
    Iooss, G., Plotnikov, P.: Existence of multimodal standing gravity waves. J. Math. Fluid Mech. 7, S349–S364 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Iooss, G., Plotnikov, P.: Multimodal standing gravity waves: a completely resonant system. J. Math. Fluid Mech. 7(1), S110–S126 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Iooss, G., Plotnikov, P., Toland, J.: Standing waves on an infinitely deep perfect fluid under gravity. Arch. Ration. Mech. Anal. 177(3), 367–478 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, S., Chen, M.: Diamond shaped standing wave patterns of a two-dimensional Boussinesq system. Appl. Numer. Mathem. (2018) (accepted)Google Scholar
  16. 16.
    Mercer, G., Roberts, A.: The form of standing waves on finite depth water. Wave Motion 19(3), 233–244 (1994)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Plotnikov, P., Toland, J.: Nash-moser theory for standing water waves. Arch. Ration. Mech. Anal. 159(1), 1–83 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Taylor, G.: An experimental study of standing waves. Proc. R. Soc. Lond. A 218(1132), 44–59 (1953)ADSCrossRefGoogle Scholar
  19. 19.
    Tsai, C., Jeng, D.: Numerical fourier solutions of standing waves in finite water depth. Appl. Ocean Res. 16(3), 185–193 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations