Advertisement

A Nonlocal Shallow-Water Model Arising from the Full Water Waves with the Coriolis Effect

  • Guilong Gui
  • Yue LiuEmail author
  • Junwei Sun
Article
  • 22 Downloads

Abstract

In the present study a mathematical model of the equatorial water waves propagating mainly in one direction with the effect of Earth’s rotation is derived by the formal asymptotic procedures in the equatorial zone. Such a model equation is analogous to the Camassa–Holm approximation of the two-dimensional incompressible and irrotational Euler equations and has a formal bi-Hamiltonian structure. Its solution corresponding to physically relevant initial perturbations is more accurate on a much longer time scale. It is shown that the deviation of the free surface can be determined by the horizontal velocity at a certain depth in the second-order approximation. The effects of the Coriolis force caused by the Earth rotation and nonlocal higher nonlinearities on blow-up criteria and wave-breaking phenomena are also investigated. Our refined analysis is approached by applying the method of characteristics and conserved quantities to the Riccati-type differential inequality.

Keywords

Coriolis effect Rotation-Camassa–Holm equation shallow water wave breaking 

Mathematics Subject Classification

35Q53 35B30 35G25 

Notes

Acknowledgements

The authors would like to thank the referees for constructive suggestions and comments. The work of Gui is supported in part by the NSF-China under the Grant Nos. 11571279, 11331005, and the Foundation FANEDD-201315. The work of Liu is supported in part by the Simons Foundation Grant-499875.

Compliance with ethical standards

Conflict of interest

The authors certify that they have no conflicts of interest concerning this work.

References

  1. 1.
    Amick, C., Toland, J.: On solitary waves of finite amplitude. Arch. Rat. Mech. Anal. 76, 9–95 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Benjamin, T., Bona, J., Mahony, J.: Model equations for long waves in nonlinear dispersive media. Philos. Trans. R. Soc. Lond. A 272, 47–78 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    Benjamin, T., Olver, P.: Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137–185 (1982)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bona, J.L., Colin, T., Lannes, D.: Long wave approximations for water waves. Arch. Ration. Mech. Anal. 178, 373–410 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boutet de Monvel, A., Kostenko, A., Shepelsky, D., Teschl, G.: Long-time asymptotics for the Camassa–Holm equation. SIAM J. Math. Anal. 41, 1559–1588 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brandolese, L.: Local-in-space criteria for blowup in shallow water and dispersive rod equations. Commun. Math. Phys. 330, 401–414 (2014)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Brandolese, L., Cortez, M.F.: Blowup issues for a class of nonlinear dispersive wave equations. J. Differ. Equ. 256, 3981–3998 (2014)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Brun, M.K., Kalisch, H.: Convective wave breaking in the KdV equation. Anal. Math. Phys. 8, 57–75 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, M., Gui, G., Liu, Y.: On a shallow-water approximation to the Green-Naghdi equations with the Coriolis effect. Adv. Math. 340, 106–137 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Constantin, A.: Nonlinear water waves with applications to wave-current interactions and Tsunamis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), vol. 81, Philadelphia (2011)Google Scholar
  12. 12.
    Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Constantin, A.: Particle trajectories in extreme Stokes waves. IMA J. Appl. Math. 77, 293–307 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Constantin, A., Gerdjikov, V.S., Ivanov, R.I.: Inverse scattering transform for the Camassa–Holm equation. Inverse Probl. 22, 2197–2207 (2006)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165–186 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Constantin, A., Mckean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Commun. Partial Differ. Equ. 10, 787–1003 (1985)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Danchin, R.: A few remarks on the Camassa–Holm equation. Differ. Integr. Equ. 14, 953–988 (2001)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D. 4, 47–66 (1981/1982)Google Scholar
  25. 25.
    Gallagher, I., Saint-Raymond, L.: On the influence of the Earth’s rotation on geophysical flows. Handbook of Mathematical Fluid Mechanics 4, 201–329 (2007)Google Scholar
  26. 26.
    Gardner, C.S., Kruskal, M.D., Miura, R.: Korteweg-de Vries equation and generalizations, II. Existence of conservation laws and constants of motion. J. Math. Phys. 9(8), 1204–1209 (1968)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Geyer, A., Quirchmayr, R.: Shallow water equations for equatorial tsunami waves. Philos. Trans. R. Soc. A 376, 20170100 (2018)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ionescu-Kruse, D.: Variational derivation of a geophysical Camassa–Holm type shallow water equation. Nonlinear Anal. 156, 286–294 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ivanov, R.: Hamiltonian model for coupled surface and internal waves in the presence of currents. Nonlinear Anal.: Real World Appl. 34, 316–334 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Johnson, R.S.: Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Johnson, R.S.: A modern introduction to the mathematical theory of water waves. Camb. Univ. Press 19, 24–31 (1997)ADSGoogle Scholar
  32. 32.
    Lenells, J.: A variational approach to the stability of periodic peakons. J. Nonlinear Math. Phys. 11, 151–163 (2004)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Philos. Mag. 39(5), 422–442 (1895)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mckean, H.P.: Breakdown of the Camassa–Holm equation. Commun. Pure Appl. Math. LVI I, 0416–0418 (2004)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Russell, J.S.: Report on water waves. British Assoc, Report (1844)Google Scholar
  36. 36.
    Stokes, G.G.: On the Theory of Oscillatory Waves, vol. I, pp. 197–229. Cambridge University Press, Cambridge (1880)Google Scholar
  37. 37.
    Toland, J.: On the existence of a wave of greatest height and Stokes’ conjecture. Proc. R. Soc. Lond. A 363, 469–485 (1978)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1973)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MathematicsNorthwest UniversityXi’anPeople’s Republic of China
  2. 2.Department of MathematicsUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations