Advertisement

Global Well-Posedness and Time-Decay Estimates of the Compressible Navier–Stokes–Korteweg System in Critical Besov Spaces

  • Noboru ChikamiEmail author
  • Takayuki Kobayashi
Article

Abstract

We consider the compressible Navier–Stokes–Korteweg system describing the dynamics of a liquid–vapor mixture with diffuse interphase. The global solutions are established under linear stability conditions in critical Besov spaces. In particular, the sound speed may be greater than or equal to zero. By fully exploiting the parabolic property of the linearized system for all frequencies, we see that there is no loss of derivative usually induced by the pressure for the standard isentropic compressible Navier–Stokes system. This enables us to apply Banach’s fixed point theorem to show the existence of global solution. Furthermore, we obtain the optimal decay rates of the global solutions in the \(L^2({\mathbb {R}}^d)\)-framework.

Keywords

Compressible Navier–Stokes–Korteweg system Besov space well-posedness time-decay 

Mathematics Subject Classification

Primary 42B37 Secondary 35Q35 

Notes

Compliance with ethical standards

Conflict of interest

Conflict of interest The authors declare that they have no conflicts of interest.

References

  1. 1.
    Abidi, H., Paicu, M.: Existence globale pour un fluide inhomogène. Ann. Inst. Fourier (Grenoble) 57, 883–917 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. In: Chenciner, A., Coates, J., Varadhan, S.R.S. (eds.) Grundlehren der Mathematischen Wissenschaften, vol. 343, pp. xvi+523. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Charve, F., Danchin, R.: A global existence result for the compressible Navier–Stokes equations in the critical \(L^{p}\) framework. Arch. Ration. Mech. Anal. 198(1), 233–271 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Charve, F., Haspot, B.: Convergence of capillary fluid models: from the non-local to the local Korteweg model. Indiana Univ. Math. J. 60(6), 2021–2059 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Charve, F., Haspot, B.: On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model. J. Funct. Anal. 265(7), 1264–1323 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Charve, F.: Local in time results for local and non-local capillary Navier–Stokes systems with large data. J. Differ. Equ. 256(7), 2152–2193 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Charve, F., Danchin, R., Xu, J.: Gevrey analyticity and decay for the compressible Navier–Stokes system with capillarity. arXiv:1805.01764v1
  8. 8.
    Chemin, J.-Y., Gallagher, I.: Wellposedness and stability results for the Navier–Stokes equations in \({\bf R}^{3}\). Ann. Inst. H. Poincaré Anal. Nonlinéaire 26(2), 599–624 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Chemin, J.-Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121, 314–328 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    Danchin, R.: Fourier analysis methods for the compressible Navier–Stokes equations. arXiv:1507.02637
  11. 11.
    Danchin, R., Desjardins, B.: Existence of solutions for compressible fluid models of Korteweg type. Ann. Inst. H. Poincaré Anal. Nonlinéaire 18(1), 97–133 (2001) (English, with English and French summaries)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Danchin, R., Xu, J.: Optimal time-decay estimates for the compressible Navier–Stokes equations in the critical \(L^{p}\) framework. Arch. Ration. Mech. Anal. 224(1), 53–90 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. Arch. Rational Mech. Anal. 88(2), 95–133 (1985)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Hattori, H., Li, D.: Global solutions of a high-dimensional system for Korteweg materials. J. Math. Anal. Appl. 198(1), 84–97 (1996)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hattori, H., Li, D.: Solutions for two-dimensional system for materials of Korteweg type. SIAM J. Math. Anal. 25(1), 85–98 (1994)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kobayashi, T., Tsuda, K.: Global existence and time decay estimate of solutions to the compressible two phase flow system under critical condition. PreprintGoogle Scholar
  17. 17.
    Korteweg, D.J.: Sur la forme que prennent les équations des movement des fluides si l’ontient comple des forces capillaires par des variations de densité. Arch. Nederl. Sci. Exactes. Nat. Ser. II 6, 1–24 (1901)Google Scholar
  18. 18.
    Kotschote, M.: Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. Indiana Univ. Math. J 63(1), 21–51 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tang, T., Gao, H.: On the compressible Navier–Stokes–Korteweg equations. Discrete Contin. Dyn. Syst. Ser. B 21(8), 2745–2766 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tan, Z., Zhang, R.: Optimal decay rates of the compressible fluid models of Korteweg type. Z. Angew. Math. Phys. 65(2), 279–300 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tsuda, K.: Existence and stability of time periodic solution to the compressible Navier–Stokes–Korteweg system on \(\mathbb{R}^3\). J. Math. Fluid Mech. 18(1), 157–185 (2016)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Van der Waals, J.D.: Théorie thermodynamique de la capillarité, dans lfhypothèse dfune variation continue de la densité. Archives Néerlandaises des sciences exactes et naturelles XXVIII, 121–209 (1893)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations