Advertisement

Instability of Nonlinear Wave–Current Interactions in a Modified Equatorial \(\beta \)-Plane Approximation

  • Adrián Rodríguez-SanjurjoEmail author
Article

Abstract

We present an instability analysis of some exact and explicit solutions to the geophysical equatorial \(\beta \)-plane equations incorporating a gravitational-correction term. A criterion for the instability is given by means of the short-wavelength perturbation method. Thresholds for both, a solution with a zonal current under constant density and a solution admitting stratification, are derived and expressed in terms of the steepness of the waves.

Keywords

Geophysical flows Exact solutions Short-wavelength stability method 

Mathematics Subject Classification

76B15 76E20 37H15 

Notes

Acknowledgements

The author acknowledges the support of the Science Foundation Ireland (SFI) research Grant 13/CDA/2117

Compliance with ethical standards

Conflict of interest

The author declares that he receives the support of the research Grant 13/CDA/2117 Science Foundation Ireland (SFI).

References

  1. 1.
    Bayly, B.J.: Three-dimensional instabilities in quasi-two dimensional inviscid flows. In: American Society of Mechanical Engineers, Applied Mechanics Division, AMD, pp. 71–77. ASME (1987)Google Scholar
  2. 2.
    Boyd, J.P.: Nonlinear wavepackets and nonlinear schroedinger equation. In: Dynamics of the Equatorial Ocean, pp. 405–464. Springer, Berlin (2018)Google Scholar
  3. 3.
    Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166(3), 523–535 (2006)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Constantin, A.: Nonlinear water waves with applications to wave–current interactions and tsunamis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia, PA (2011)Google Scholar
  5. 5.
    Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43(1), 165–175 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44(2), 781–789 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118(6), 2802–2810 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Constantin, A., Ivanov, R.I., Martin, C.-I.: Hamiltonian formulation for wave–current interactions in stratified rotational flows. Arch. Ration. Mech. Anal. 221(3), 1417–1447 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Constantin, A., Ivanov, R.: A hamiltonian approach to wave–current interactions in two-layer fluids. Phys. Fluids 27(8), 086603 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109(4), 311–358 (2015)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Constantin, A., Johnson, R.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46(6), 1935–1945 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Constantin, A., Johnson, R.: Large gyres as a shallow-water asymptotic solution of euler’s equation in spherical coordinates. Proc. R. Soc. A 473(2200), 20170063 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Constantin, A., Johnson, R.: A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline. Phys. Fluids 29(5), 056604 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Constantin, A., Johnson, R.: Steady large-scale ocean flows in spherical coordinates. Oceanography 31(3), 42–50 (2018)CrossRefGoogle Scholar
  16. 16.
    Constantin, A., Monismith, S.: Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511–528 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Cushman-Roisin, B., Beckers, J.M.: Chapter 21—Equatorial Dynamics, International Geophysics, vol. 101. Academic Press, Cambridge (2011)zbMATHGoogle Scholar
  18. 18.
    Dellar, P.J.: Variations on a beta-plane: derivation of non-traditional beta-plane equations from hamilton’s principle on a sphere. J. Fluid Mech. 674, 174–195 (2011)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Drazin, P.G., Reid, W.H.: Hydrodynamic stability. Technical report. Cambridge university press (1981)Google Scholar
  20. 20.
    Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66(17), 2204 (1991)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16(4), 661–667 (2014)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Gerstner, F.: Theorie der wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)CrossRefGoogle Scholar
  23. 23.
    Henry, D.: On three-dimensional gerstner-like equatorial water waves. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2111), 20170088 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Henry, D.: On the deep-water Stokes wave flow. Int. Math. Res. Not. IMRN (2008). Art. ID rnn 071, 7Google Scholar
  25. 25.
    Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Henry, D.: A modified equatorial \(\beta \)-plane approximation modelling nonlinear wave–current interactions. J. Differ. Equ. 263(5), 2554–2566 (2017)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Henry, D., Hsu, H.-C.: Instability of internal equatorial water waves. J. Differ. Equ. 258(4), 1015–1024 (2015)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Henry, D., Martin, C.-I.: Exact, purely azimuthal stratified equatorial flows in cylindrical coordinates. Dyn. Partial Differ. Equ. 15(4), 337–349 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Henry, D., Martin, C.-I.: Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification. J. Differ. Equ. (2018).  https://doi.org/10.1016/j.jde.2018.11.017 ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Hsu, H.-C.: Some nonlinear internal equatorial flows. Nonlinear Anal. Real World Appl. 18, 69–74 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ionescu-Kruse, D.: Short-wavelength instabilities of edge waves in stratified water. Discrete Contin. Dyn. Syst. A 35, 2053–2066 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ionescu-Kruse, D.: Instability of equatorially trapped waves in stratified water. Annali di Matematica Pura ed Applicata (1923-) 195(2), 585–599 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ionescu-Kruse, D.: Instability of Pollard’s exact solution for geophysical ocean flows. Phys. Fluids 28(8), 086601 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Ionescu-Kruse, D.: On the short-wavelength stabilities of some geophysical flows. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2111), 20170090 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Ionescu-Kruse, D., Martin, C.-I.: Local stability for an exact steady purely azimuthal equatorial flow. J. Math. Fluid Mech. 20(1), 27–34 (2018)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Kluczek, M.: Equatorial water waves with underlying currents in the f-plane approximation. Appl. Anal. 97(11), 1867–1880 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Leblanc, S.: Local stability of gerstner’s waves. J. Fluid Mech. 506, 245–254 (2004)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Lifschitz, A., Hameiri, E.: Local stability conditions in fluid dynamics. Phys. Fluids A Fluid Dyn. 3(11), 2644–2651 (1991)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Martin, C.I.: On the vorticity of mesoscale ocean currents. Oceanography 31(3), 28–35 (2018)CrossRefGoogle Scholar
  40. 40.
    Matioc, A.-V.: Exact geophysical waves in stratified fluids. Appl. Anal. 92(11), 2254–2261 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Rodriguez-Sanjurjo, A.: Global diffeomorphism of the lagrangian flow-map for equatorially-trapped internal water waves. Nonlinear Anal. Theory Methods Appl. 149, 156–164 (2017)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Sastre-Gomez, S.: Global diffeomorphism of the lagrangian flow-map defining equatorially trapped water waves. Nonlinear Anal. 125, 725–731 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity College CorkCorkIreland

Personalised recommendations