Capillary Surfaces in Circular Cylinders

  • Thomas I. VogelEmail author


In the absence of gravity, a capillary surface within a circular cylinder will have constant mean curvature and will make a constant contact angle with the cylinder. Two types of surfaces with these properties are Delaunay surfaces and cylinders (i.e., the free surface of the liquid is another circular cylinder). Stability and energy minimality of these particular capillary surfaces are investigated.


Capillarity Delaunay surface Constant mean curvature 

Mathematics Subject Classification

Primary 76B45 Secondary 53A10 


Compliance with ethical standards

Conflict of interest

The author has no conflicts of interest in this work.


  1. 1.
    Collicot, S.H., Lindsey, W.G., Frazer, D.G.: Zero-gravity liquid–vapor interfaces in circular cylinders. Phys. Fluids 18, 087109 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience Publishers, New York (1953)zbMATHGoogle Scholar
  3. 3.
    Finn, R.: Equilibrium Capillary Surfaces. Spring, New York (1986)CrossRefGoogle Scholar
  4. 4.
    Finn, R., Vogel, T.I.: On the volume infimum for liquid bridges. Z. Anal. Anwend. 11, 3–23 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fitzpatrick, P.: Advanced Calculus, 2nd edn. Thomson Brooks/Cole, San Francisco (2006)zbMATHGoogle Scholar
  6. 6.
    Lindsley, W.G., Collicot, S.H., Franz, G.N., Stolarik, B., McKinney, W., Frazer, D.G.: Asymmetric and axisymmetric constant curvature liquid–gas interfaces in pulmonary airways. Ann. Biomed. Eng. 33(3), 365–375 (2005)CrossRefGoogle Scholar
  7. 7.
    Lopez, R., Pyo, J.: Capillary surfaces of constant mean curvature in a right solid cylinder. Math. Nachr. 287, 1312–1319 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Vogel, T.I.: Comments on radially symmetric liquid bridges with inflected profiles. Dyn. Contin. Discrete Impuls. Syst. 2005(Supplement Volume), 862–867 (2005)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Vogel, T.I.: Convex, rotationally symmetric liquid bridges between spheres. Pac. J. Math. 2, 367–377 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Vogel, T.I.: Liquid bridges between balls: the small volume instability. J. Math. Fluid Mech. 15(2), 397–413 (2013)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Vogel, T.I.: Local energy minimality of capillary surfaces in the presence of symmetry. Pac. J. Math. 206, 487–509 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Vogel, T.I.: Stability and bifurcation of a surface of constant mean curvature in a wedge. Indiana U. J. Math. 41(3), 625–648 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wente, H.C.: The stability of the axially symmetric pendent drop. Pac. J. Math. 88, 411–470 (1980)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations