Advertisement

Global Unique Solvability of the Initial-Boundary Value Problem for the Equations of One-Dimensional Polytropic Flows of Viscous Compressible Multifluids

  • Alexander E. Mamontov
  • Dmitry A. ProkudinEmail author
Article

Abstract

We consider the equations which describe polytropic one-dimensional flows of viscous compressible multifluids. We prove global existence and uniqueness of a solution to the initial-boundary value problem which corresponds to the flow in a bounded space domain.

Keywords

Multifluid Viscous compressible flow Initial-boundary value problem Polytropic flow Global existence Uniqueness 

Mathematics Subject Classification

Primary 76N10 Secondary 76T99 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, vol. 22. North-Holland Publishing Co., Amsterdam (1990)zbMATHGoogle Scholar
  2. 2.
    Basov, I.V., Shelukhin, V.V.: On equations of a nonlinear compressible fluid with a discontinuous constitutive law. Sib. Math. J. 40(3), 435–445 (1999)CrossRefGoogle Scholar
  3. 3.
    Dorovsky, V.N., Perepechko, YuV: Theory of the partial melting. Sov. Geol. Geophys. 9, 56–64 (1989)Google Scholar
  4. 4.
    Frehse, J., Goj, S., Malek, J.: On a Stokes-like system for mixtures of fluids. SIAM J. Math. Anal. 36(4), 1259–1281 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Frehse, J., Goj, S., Malek, J.: A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum. Appl. Math. 50(6), 527–541 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Frehse, J., Weigant, W.: On quasi-stationary models of mixtures of compressible fluids. Appl. Math. 53(4), 319–345 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Giovangigli, V.: Multicomponent Flow Modeling. Birkhäuser, Boston (1999)CrossRefGoogle Scholar
  8. 8.
    Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41(2), 273–282 (1977)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mamontov, A.E., Prokudin, D.A.: Viscous compressible multi-fluids: modeling and multi-D existence. Methods Appl. Anal. 20(2), 179–195 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Mamontov, A.E., Prokudin, D.A.: Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat-conducting fluids. Izvestiya: Mathematics 78(3), 554–579 (2014)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Mamontov, A.E., Prokudin, D.A.: Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids. Sib. Math. J. 57(6), 1044–1054 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mamontov, A.E., Prokudin, D.A.: Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids. Sib. Electr. Math. Rep. 13, 541–583 (2016)zbMATHGoogle Scholar
  13. 13.
    Mamontov, A.E., Prokudin, D.A.: Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids. Sib. Electr. Math. Rep. 13, 664–693 (2016)zbMATHGoogle Scholar
  14. 14.
    Mamontov, A.E., Prokudin, D.A.: Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids. Sib. Math. J. 58(1), 113–127 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mamontov, A.E., Prokudin, D.A.: Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory. Sib. Electr. Math. Rep. 14, 388–397 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Mamontov, A.E., Prokudin, D.A.: Modeling viscous compressible barotropic multi-fluid flows. J. Phys. Conf. Ser. 894, 012058 (2017)CrossRefGoogle Scholar
  17. 17.
    Mamontov, A.E., Prokudin, D.A.: Solubility of unsteady equations of multi-component viscous compressible fluids. Izvestiya: Mathematics 82(1), 140–185 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Mamontov, A.E., Prokudin, D.A.: Local solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids. J. Math. Sci. 231(2), 227–242 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mamontov, A.E., Prokudin, D.A.: Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids. Sib. Electr. Math. Rep. 15, 631–649 (2018)MathSciNetGoogle Scholar
  20. 20.
    Mucha, P.B., Pokorny, M., Zatorska, E.: Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution. SIAM J. Math. Anal. 47(5), 3747–3797 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nigmatulin, R.I.: Dynamics of Multiphase Media, vol. 1. Hemisphere, N.Y. (1990)Google Scholar
  22. 22.
    Prokudin, D.A.: Unique solvability of initial-boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids. Sib. Electr. Math. Rep. 14, 568–585 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Prokudin, D.A.: Global solvability of the initial boundary value problem for a model system of one-dimensional equations of polytropic flows of viscous compressible fluid mixtures. J. Phys. Conf. Ser. 894, 012076 (2017)CrossRefGoogle Scholar
  24. 24.
    Prokudin, D.A., Krayushkina, M.V.: Solvability of a stationary boundary value problem for a model system of the equations of barotropic motion of a mixture of compressible viscous fluids. J. Appl. Ind. Math. 10(3), 417–428 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Rajagopal, K.L., Tao, L.: Mechanics of Mixtures. Series on Advances in Mathematics for Applied Sciences, vol. 35. World Scientific, River Edge (1995)zbMATHGoogle Scholar
  26. 26.
    Weigant, W.: Non-homogeneous boundary value problems for the Navier–Stokes equations of a viscous gas. Ph. D. Thesis, Barnaul (1992)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lavrentyev Institute of Hydrodynamics SB RASNovosibirsk State UniversityNovosibirskRussian Federation
  2. 2.Lavrentyev Institute of Hydrodynamics SB RASVoronezh State UniversityNovosibirskRussian Federation

Personalised recommendations