A Note on the Regularity Time of Leray Solutions to the Navier–Stokes Equations

  • P. Braz e SilvaEmail author
  • J. P. Zingano
  • P. R. Zingano


In this note we slightly improve a well known result about the regularity time of Leray solutions \({{\varvec{u}}}(\cdot ,t)\) to the Navier–Stokes equations in \( \mathbb {R}^{n} \!\,\!\) (\(n \le 4\)). A related result on the eventual monotonicity of \( \,\! \Vert \;\!D^{m}{{\varvec{u}}}(\cdot ,t) \,\!\Vert _{L^{2}(\mathbb {R}^{n})} \!\;\!\) for arbitrary \( m \,\!\) is also discussed.



Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 309491/2015-0). P. Braz e Silva was funded by this grant.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    Agueh, M.: Gagliardo–Nirenberg inequalities involving the gradient \(L^{2}\!\)-norm. C. R. Acad. Sci. Paris Ser. I 346, 757–762 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, New York (2011)CrossRefGoogle Scholar
  3. 3.
    Heywood, J.G.: The epochs of regularity for weak solutions of the Navier–Stokes equations in unbounded domains. Tôhoku Math. J. 40, 293–313 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Heywood, J.G.: Remarks on the possible global regularity of solutions of the three-dimensional Navier–Stokes equations. In: Galdi, G.P., Málek, J., Nec̆as, J. (Eds.), Progress in Theoretical and Computational Fluid Mechanics. Longman, New York, pp. 1–32 (1994)Google Scholar
  5. 5.
    Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1950)CrossRefGoogle Scholar
  6. 6.
    Kreiss, H.-O., Hagstrom, T., Lorenz, J., Zingano, P.R.: Decay in time of incompressible flows. J. Math. Fluid Mech. 5, 231–244 (2003)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Leray, J.: Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lorenz, J., Zingano, P.R.: The Navier–Stokes equations for incompressible flows: solution properties at potential blow-up times. Bol. Soc. Paran. Mat. 35, 127–158 (2017)Google Scholar
  9. 9.
    Oliver, M., Titi, E.S.: Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in \( \mathbb{R}^{n} \!\). J. Funct. Anal. 172, 1–18 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rigelo, J.C., Schütz, L., Zingano, J.P., Zingano, P.R.: Leray’s problem for the Navier–Stokes equations revisited. C. R. Acad. Sci. Paris Ser. I 354, 503–509 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Schonbek, M.E., Wiegner, M.: On the decay of higher-order norms of the solutions of Navier–Stokes equations. Proc. R. Soc. Edinb. 126A, 677–685 (1996)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sohr, H.: The Navier–Stokes Equations. Birkhäuser, Basel (2001)zbMATHGoogle Scholar
  13. 13.
    Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, 2nd edn. AMS/Chelsea, Providence (1984)zbMATHGoogle Scholar
  14. 14.
    von Wahl, W.: The Equations of Navier–Stokes and Abstract Parabolic Equations. Friedr. Vieweg, Braunschweig (1985)CrossRefGoogle Scholar
  15. 15.
    Wiegner, M.: Decay results for weak solutions of the Navier–Stokes equations on \(\mathbb{R}^{n}\!\). J. Lond. Math. Soc. 35, 303–313 (1987)CrossRefGoogle Scholar
  16. 16.
    Zhou, Y.: A remark on the decay of solutions to the 3-D Navier–Stokes equations. Math. Methods Appl. Sci. 30, 1223–1229 (2007)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departmento de MatemáticaUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Departamento de Matemática Pura e AplicadaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations