A Floating Cylinder on an Unbounded Bath

Article

Abstract

In this paper, we reconsider a circular cylinder horizontally floating on an unbounded reservoir in a gravitational field directed downwards, which was studied by Bhatnagar and Finn (Phys Fluids 18(4):047103, 2006). We follow their approach but with some modifications. We establish the relation between the total energy \(E_T\) relative to the undisturbed state and the total force \(F_T\), that is, \(F_T = -\frac{dE_T}{dh}\), where h is the height of the center of the cylinder relative to the undisturbed fluid level. There is a monotone relation between h and the wetting angle \(\phi _0\). We study the number of equilibria, the floating configurations and their stability for all parameter values. We find that the system admits at most two equilibrium points for arbitrary contact angle \(\gamma \), the one with smaller \(\phi _0\) is stable and the one with larger \(\phi _0\) is unstable. Since the one-sided solution can be translated horizontally, the fluid interfaces may intersect. We show that the stable equilibrium point never lies in the intersection region, while the unstable equilibrium point may lie in the intersection region.

Keywords

Capillary surfaces floating cylinder surface tension energy forces stability 

Mathematics Subject Classification

Primary 76B45 Secondary 34B40 49Q10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhatnagar, R., Finn, R.: Equilibrium configurations of an infinite cylinder in an unbounded fluid. Phys. Fluids 18(4), 047103 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Vella, D., Lee, D.G., Kim, H.Y.: The load supported by small floating objects. Langmuir 22(14), 5979–5981 (2006)CrossRefGoogle Scholar
  3. 3.
    Finn, R.: On Young’s Paradox, and the attractions of immersed parallel plates. Phys. Fluids 22(1), 017103 (2010)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Finn, R., McCuan, J., Wente, H.C.: Thomas Young’s surface tension diagram: its history, legacy, and irreconcilabilities. J. Math. Fluids Mech. 14(3), 445–453 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Lunati, I.: Young’s law and the effects of interfacial energy on the pressure at the solid–fluid interface. Phys. Fluids 19, 118105 (2007)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Finn, R.: The contact angle in capillarity. Phys. Fluids 18(4), 047102 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Marchand, A., Weijs, J.H., Snoeijer, J.H., Andreotti, B.: Why is surface tension a force parallel to the interface? Am. J. Phys. 79(10), 999–1008 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    McCuan, J., Treinen, R.: Capillarity and Archimedes’ principle of flotation. Pac. J. Math. 265, 123–150 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Vella, D.: Floating versus sinking. Annu. Rev. Fluids Mech. 47(1), 115–135 (2015)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Finn, R., Lu, D.: Mutual attractions of partially immersed parallel plates. J. Math. Fluids Mech. 15(2), 273–301 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Wente, H.C.: New exotic containers. Pac. J. Math. 224(2), 379–398 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Treinen, R.: Examples of non-uniqueness of the equilibrium states for a floating ball. Adv. Mater. Phys. Chem. 6(7), 177–194 (2016)CrossRefGoogle Scholar
  13. 13.
    Finn, R.: Equilibrium Capillary Surfaces. Springer, New York (1986)CrossRefMATHGoogle Scholar
  14. 14.
    Chen, H.: Floating bodies with surface tension. Master’s Thesis, University of Waterloo (2016)Google Scholar
  15. 15.
    Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar
  16. 16.
    Gifford, W., Scriven, L.: On the attraction of floating particles. Chem. Eng. Sci. 26, 287–000 (1971)CrossRefGoogle Scholar
  17. 17.
    Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions. Birkhäuser, Boston (2002)CrossRefMATHGoogle Scholar
  18. 18.
    McCuan, J., Treinen, R.: Personal Communication (2017)Google Scholar
  19. 19.
    McCuan, J., Treinen, R.: On floating equilibria in a laterally finite container. SIAM J. Appl. Math. 78(1), 551–570 (2018)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations