On the Bardina’s Model in the Whole Space

Article

Abstract

We consider the Bardina’s model for turbulent incompressible flows in the whole space with a cut-off frequency of order \(\alpha ^{-1} >0\). We show that for any \(\alpha >0\) fixed, the model has a unique regular solution defined for all \(t \in [0, \infty [\).

Keywords

Navier–Stokes equations Bardina’s model Regular solutions Helmholtz filter 

Mathematics Subject Classification

35Q30 35D30 76D03 76D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The research that led to the present paper was partially supported by a grant of the group GNAMPA of INdAM.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adams, N.A., Stolz, S.: Deconvolution methods for subgrid-scale approximation in large eddy simulation. In: Geurts, B. (ed.) Modern Simulation Strategies for Turbulent Flow. R.T. Edwards, Flourtown (2001)Google Scholar
  2. 2.
    Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid scale models for large eddy simulation. AIAA Paper 80-1357 (1980)Google Scholar
  3. 3.
    Berselli, L.-C., Galdi, G.-P., Iliescu, T., Layton, W.-J.: Mathematical analysis for the rational large eddy simulation model. Math. Models Methods Appl. Sci. 12(8), 1131–1152 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Berselli, L.C., Iliescu, T., Layton, W.J.: Mathematics of Large Eddy Simulation of Turbulent Flows. Scientific Computation. Springer, Berlin (2006)MATHGoogle Scholar
  5. 5.
    Berselli, L.C., Lewandowski, R.: Convergence of regular solutions of Bardina’s model to solutions of the Navier–Stokes equations (2018) (in progress) Google Scholar
  6. 6.
    Brézis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Théorie et applications. [Theory and applications]. Masson, Paris (1983)Google Scholar
  7. 7.
    Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math. 35(6), 771–831 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cao, C., Holm, D.D., Titi, E.S.: On the Clark-\(\alpha \) model of turbulence: global regularity and long-time dynamics. J. Turbul. 6, 11 (2005)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Cao, Y., Lunasin, E.M., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4), 823–848 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chow, F.-K., De Wekker, S.-F., Snyder, B. (eds.): Mountain Weather Research and Forecasting: Recent Progress and Current Challenges. Springer, Berlin (2013)Google Scholar
  11. 11.
    DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 16, 269–315 (1964)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Galdi, G.-P.: An introduction to the Navier–Stokes initial-boundary value problem. In: Galdi, G.P., et al. (eds.) Fundamental Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics, pp. 1–70. Birkhäuser, Basel (2000)Google Scholar
  14. 14.
    Galdi, G.-P., Simader, C.-G.: Existence, uniqueness and \(L^q\)-estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal. 112(4), 291–318 (1990)CrossRefMATHGoogle Scholar
  15. 15.
    Gilbarg, D., Trudinger, N.-S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Reprint of the (1998) edition. Springer, Berlin (2001)MATHGoogle Scholar
  16. 16.
    Ilyin, A.-A., Lunasin, E.-M., Titi, E.-S.: A modified-Leray-\(\alpha \) subgrid scale model of turbulence. Nonlinearity 19(4), 879–897 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Layton, W., Lewandowski, R.: A simple and stable scale-similarity model for large eddy simulation: energy balance and existence of weak solutions. Appl. Math. Lett. 16(8), 1205–1209 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Layton, W., Lewandowski, R.: On a well-posed turbulence model. Discrete Contin. Dyn. Syst. Ser. B 6(1), 111–128 (2006)MathSciNetMATHGoogle Scholar
  19. 19.
    Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lewandowski, R.: Navier–Stokes equations in the whole space with an eddy viscosity. Technical report. arXiv:1705.11043 (2017)
  21. 21.
    Oseen, C.W.: Sur les formules de Green généralisées qui se présentent dans l’hydrodynamique et sur quelquesunes de leurs applications. Acta Math. 34(1), 205–284 (1911)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Oseen, C.-W.: Neuere Methoden und Ergebnisse in der Hydrodynamik. Akademische Verlagsgesellschaft m. b. h, Leipzig (1927)MATHGoogle Scholar
  23. 23.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Scientific Computation, 3rd edn. Springer, Berlin. An introduction, Translated from the 1998 French original. With forewords by Marcel Lesieur and Massimo Germano, With a foreword by Charles Meneveau (2006)Google Scholar
  24. 24.
    Solonnikov, V.A.: Estimates for solutions of a non-stationary linearized system of Navier–Stokes equations. Trudy Mat. Inst. Steklov. 70, 213–317 (1964)MathSciNetGoogle Scholar
  25. 25.
    Stein, E.-M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)Google Scholar
  26. 26.
    Stolz, S., Adams, N.A., Kleiser, L.: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13(4), 997–1015 (2001)ADSCrossRefMATHGoogle Scholar
  27. 27.
    Tao, T.: Finite time blowup for an averaged three-dimensional Navier–Stokes equation. J. Am. Math. Soc. 29(3), 601–674 (2016)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fluminance Team, INRIA, IRMAR, UMR 6625Université Rennes 1Rennes CedexFrance
  2. 2.Dipartimento di MatematicaUniversità di PisaPisaItaly

Personalised recommendations