Advertisement

Journal of Mathematical Fluid Mechanics

, Volume 20, Issue 3, pp 1249–1267 | Cite as

A Contribution to the Theory of Regularity of a Weak Solution to the Navier–Stokes Equations via One Component of Velocity and Other Related Quantities

  • Jiří Neustupa
Article
  • 67 Downloads

Abstract

We deal with a suitable weak solution \((\mathbf {v},p)\) to the Navier–Stokes equations in \(\Omega \times (0,T)\), where \(\Omega \) is a domain in \({\mathbb R}^3\), \(T>0\) and \(\mathbf {v}=(v_1,v_2,v_3)\). We show that the regularity of \((\mathbf {v},p)\) at a point \((\mathbf {x}_0, t_0)\in \Omega \times (0,T)\) is essentially determined by the Serrin-type integrability of the positive part of a certain linear combination of \(v_1^2,\, v_2^2,\, v_3^2\) and p in a backward neighborhood of \((\mathbf {x}_0,t_0)\). An appropriate choice of the coefficients in the linear combination leads to the Serrin-type condition on the positive part of the Bernoulli pressure \(\frac{1}{2}|\mathbf {v}|^2+p\) or the negative part of p (Theorem 1), or one component of \(\mathbf {v}\) (Theorem 2), etc.

Keywords

Navier–Stokes equations weak solution regularity 

Mathematics Subject Classification

Primary 35Q30 Secondary 76D03 76D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cao, C., Titi, E.: Regularity criteria for the three dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57(6), 2643–2661 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chemin, J.-Y., Zhang, P., Zhang, Z.: On the critical one component regularity for 3-D Navier–Stokes system: general case. Arch. Ration. Mech. Anal. 224(3), 871–905 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Farwig, R., Kozono, H., Sohr, H.: Criteria of local in time regularity of the Navier–Stokes equations beyond Serrin’s condition. Banach Center Publ., vol. 81, Parabolic and Navier–Stokes equations, Part 1, pp. 175–184, Warsaw (2008)Google Scholar
  5. 5.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, 2nd edn. Springer, New York (2011)zbMATHGoogle Scholar
  6. 6.
    Galdi, G.P.: An introduction to the Navier–Stokes initial-boundary value problem. In: Galdi, G.P., Heywood, J., Rannacher, R. (eds.) Fundamental Directions in Mathematical Fluid Mechanics, series “Advances in Mathematical Fluid Mechanics”, pp. 1–98. Birkhauser, Basel (2000)Google Scholar
  7. 7.
    Kukavica, I., Ziane, M.: One component regularity for the Navier–Stokes equations. Nonlinearity 19(2), 453–469 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ladyzhenskaya, O.A.: Mathematical Problems in the Dynamics of Viscous Incompressible Fluid. Gordon and Breach, New York (1963)Google Scholar
  9. 9.
    Ladyzhenskaya, O.A., Seregin, G.A.: On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 1, 356–387 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lin, F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51, 241–257 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nečas, J., Neustupa, J.: New conditions for local regularity of a suitable weak solution to the Navier–Stokes equations. J. Math. Fluid Mech. 4, 237–256 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Neustupa, J., Penel, P.: Regularity of a suitable weak solution of the Navier–Stokes equations as a consequence of regularity of one velocity component. In: Sequeira, A., Beirao da Veiga, H., Videman, J. (eds.) Applied Nonlinear Analysis, pp. 391–402. Kluwer Academic, New York (1999)Google Scholar
  13. 13.
    Neustupa, J., Penel, P.: Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier–Stokes equations. In: Neustupa, J., Penel, P. (eds.) Mathematical Fluid Mechanics, Recent Results and Open Questions, pp. 237–268. Birkhauser, Basel (2001)CrossRefGoogle Scholar
  14. 14.
    Neustupa, J., Novotný, A., Penel, P.: An interior regularity of a weak solution to the Navier–Stokes equations in dependence on one component of velocity. In: Galdi, G.P., Rannacher, R. (eds.) Quaderni di Matematica, Vol. 10: Topics in Mathematical Fluid Mechanics, pp. 163–183. Napoli, Caserta (2003)Google Scholar
  15. 15.
    Neustupa, J.: A note on local interior regularity of a suitable weak solution to the Navier-Stokes problem. Discrete Cont. Dyn. Syst. Ser. S 6(5), 1391–1400 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Neustupa, J.: A removable singularity in a suitable weak solution to the Navier–Stokes equations. Nonlinearity 25, 1695–1708 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Neustupa, J.: A refinement of the local Serrin-type regularity criterion for a suitable weak solution to the Navier–Stokes equations. Arch. Ration. Mech. Anal. 214, 525–544 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Skalák, Z., Kučera, P.: Regularity of pressure in the neighbourhood of regular points of weak solution of the Navier–Stokes equations. Appl. Math. 48(6), 573–586 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts, Basel-Boston-Berlin (2001)Google Scholar
  20. 20.
    Takahashi, S.: On interior regularity criteria for weak solutions of the Navier–Stokes equations. Manuscr. Math. 69(3), 237–254 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  22. 22.
    Wolf, J.: A new criterion for partial regularity of suitable weak solutions to the Navier–Stokes equations. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics, pp. 613–630. Springer, Berlin (2010)Google Scholar
  23. 23.
    Zhou, Y., Pokorný, M.: On the regularity of the solutions of the Navier–Stokes equations via one velocity component. Nonlinearity 23(5), 1097–1107 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsCzech Academy of SciencesPragueCzech Republic

Personalised recommendations