Advertisement

Journal of Mathematical Fluid Mechanics

, Volume 20, Issue 3, pp 1195–1211 | Cite as

On the Rayleigh–Taylor Instability in Presence of a Background Shear

  • Roman Shvydkoy
Article
  • 56 Downloads

Abstract

In this note we revisit the classical subject of the Rayleigh–Taylor instability in presence of an incompressible background shear flow. We derive a formula for the essential spectral radius of the evolution group generated by the linearization near the steady state and reveal that the velocity variations neutralize shortwave instabilities. The formula is a direct generalization of the result of Hwang and Guo (Arch Ration Mech Anal 167(3):235–253, (2003). Furthermore, we construct a class of steady states which posses unstable discrete spectrum with neutral essential spectrum. The technique involves the WKB analysis of the evolution equation and contains novel compactness criterion for pseudo-differential operators on unbounded domains.

Keywords

Rayleigh–Taylor instability Essential spectrum Pseudo-differential operator WKB 

Mathematics Subject Classification

76E20 35P05 47D06 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics. Clarendon Press, Oxford (1961)Google Scholar
  2. 2.
    Cherfils-Clérouin, C., Lafitte, O., Raviart, P.-A.: Asymptotic results for the linear stage of the Rayleigh-Taylor instability. In: Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., pp. 47–71. Birkhäuser, Basel (2001)Google Scholar
  3. 3.
    Friedlander, S.: On nonlinear instability and stability for stratified shear flow. J. Math. Fluid Mech. 3(1), 82–97 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Friedlander, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire 14(2), 187–209 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Helffer, B., Lafitte, O.: Asymptotic methods for the eigenvalues of the Rayleigh equation for the linearized Rayleigh–Taylor instability. Asymptot. Anal. 33(3–4), 189–235 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hwang, H.J., Guo, Y.: On the dynamical Rayleigh–Taylor instability. Arch. Ration. Mech. Anal. 167(3), 235–253 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lafitte, O.: Sur la phase linéaire de l’instabilité de Rayleigh-Taylor. In Séminaire: Équations aux Dérivées Partielles, 2000–2001, Sémin. Équ. Dériv. Partielles, pages Exp. No. XXI, 22. École Polytech., Palaiseau, (2001)Google Scholar
  8. 8.
    Lafitte, O.: The linear and nonlinear Rayleigh–Taylor instability for the quasi-isobaric profile. Phys. D 237(10–12), 1602–1639 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lin, Z.: Nonlinear instability of ideal plane flows. Int. Math. Res. Not. 41, 2147–2178 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lin, Z.: Some recent results on instability of ideal plane flows. In: Nonlinear Partial Differential Equations and Related Analysis, vol. 71 of Contemp. Math., pp. 217–229. Amer. Math. Soc., Providence, RI, (2005)Google Scholar
  11. 11.
    Lin, Z., Zeng, C.: Unstable manifolds of Euler equations. Comm. Pure Appl. Math. 66(11), 1803–1836 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nussbaum, R.D.: The radius of the essential spectrum. Duke Math. J. 37, 473–478 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rayleigh, L.: Analytic solutions of the Rayleigh equation for linear density profiles. Proc. Lond. Math. Soc. 14, 170–177 (1883)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ruzhansky, M., Turunen, V.: On the Fourier analysis of operators on the torus. In: Modern Trends in Pseudo-Differential Operators, vol. 172 of Oper. Theory Adv. Appl., pp. 87–105. Birkhäuser, Basel, (2007)Google Scholar
  15. 15.
    Ruzhansky, M., Turunen, V.: Quantization of pseudo-differential operators on the torus. J. Fourier Anal. Appl. 16(6), 943–982 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin, second edition, (2001). Translated from the 1978 Russian original by Stig I. AnderssonGoogle Scholar
  17. 17.
    Shvydkoy, R., Latushkin, Y.: Operator algebras and the Fredholm spectrum of advective equations of linear hydrodynamics. J. Funct. Anal. 257(10), 3309–3328 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shvydkoy, R.: The essential spectrum of advective equations. Commun. Math. Phys. 265(2), 507–545 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shvydkoy, R.: Continuous spectrum of the 3D Euler equation is a solid annulus. C. R. Math. Acad. Sci. Paris 348(15–16), 897–900 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Trèves, F.: Introduction to Pseudodifferential and Fourier Integral Operators. Vol. 1. Plenum Press, New York-London, (1980). Pseudodifferential operators, The University Series in MathematicsGoogle Scholar
  21. 21.
    Vishik, M.: Spectrum of small oscillations of an ideal fluid and Lyapunov exponents. J. Math. Pures Appl. (9) 75(6), 531–557 (1996)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Vishik, M., Friedlander, S.: Nonlinear instability in two dimensional ideal fluids: the case of a dominant eigenvalue. Commun. Math. Phys. 243(2), 261–273 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics, and Computer Science, M/C 249University of IllinoisChicagoUSA

Personalised recommendations