Journal of Mathematical Fluid Mechanics

, Volume 20, Issue 3, pp 1123–1135 | Cite as

Estimates of the Modeling Error of the \(\alpha \)-Models of Turbulence in Two and Three Space Dimensions

  • Argus A. DuncaEmail author


This report investigates the convergence rate of the weak solutions \(\mathbf{w}^{\alpha }\) of the Leray-\(\alpha \), modified Leray-\(\alpha \), Navier–Stokes-\(\alpha \) and the zeroth ADM turbulence models to a weak solution \(\mathbf{u}\) of the Navier–Stokes equations. It is assumed that this weak solution \(\mathbf{u}\) of the NSE belongs to the space \(L^4(0, T; H^1)\). It is shown that under this regularity condition the error \(\mathbf{u}-\mathbf{w}^{\alpha }\) is \(\mathcal {O}(\alpha )\) in the norms \(L^2(0, T; H^1)\) and \(L^{\infty }(0, T; L^2)\), thus improving related known results. It is also shown that the averaged error \(\overline{\mathbf{u}}-\overline{\mathbf{w}^{\alpha }}\) is higher order, \(\mathcal {O}(\alpha ^{1.5})\), in the same norms, therefore the \(\alpha \)-regularizations considered herein approximate better filtered flow structures than the exact (unfiltered) flow velocities.


Leray-\(\alpha \) Navier–Stokes equations Navier–Stokes-\(\alpha \) model Modified Leray-\(\alpha \) model Leray-deconvolution model Viscous Camassa–Holm Zeroth ADM model Simplified Bardina model Helmholtz filter 

Mathematics Subject Classification

35Q30 76D05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author thanks Edriss Titi for a helpful communication on the convergence of \(\alpha \)-models of turbulence.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interests.


  1. 1.
    Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler solutions. Commun. Math. Phys. 94, 61–66 (1984)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Berselli, L., Catania, D., Lewandowski, R.: Convergence of approximate deconvolution models to the mean magnetohydrodynamics equations: analysis of two models. J. Math. Anal. Appl. 401, 864–880 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berselli, L., Lewandowski, R.: Convergence of approximate deconvolution models to the filtered Navier–Stokes equations. Annales de l’Institut Henri Poincare (C), Non Linear Anal. 29(2), 171–198 (2012)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Cao, Y., Lunasin, E.M., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4), 823–848 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cao, Y., Titi, E.S.: On the rate of convergence of the two-dimensional \(\alpha \)-models of turbulence to the Navier–Stokes equations. Numer. Funct. Anal. Optim. 30, 1231–1271 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, L., Guenther, R.B., Kim, S., Thomann, E.A., Waymire, E.C.: A rate of convergence for the LANS-\(\alpha \) regularization of Navier–Stokes equations. J. Math. Anal. Appl. 348, 637–649 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chepyzhov, V.V., Titi, E.S., Vishik, M.I.: On the convergence of solutions of the Leray-\(\alpha \) model to the trajectory attractor of the 3D Navier–Stokes system. J. Discrete Contin. Dyn. Syst. Ser. A 17, 481–500 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cheskidov, A., Holm, D., Olson, E., Titi, E.: On a Leray-alpha model of turbulence. In Proceedings, Series A, Mathematical, Physical and Engineering Sciences, vol. 461. Royal Society, London, pp. 629–649 (2005)Google Scholar
  9. 9.
    Cuff, V., Dunca, A., Manica, C., Rebholz, L.: The reduced order NS-\(\alpha \) model for incompressible flow: theory, numerical analysis and benchmark testing. M2AN 49(3), 641–662 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dunca, A., John, V.: Finite element error analysis of space averaged flow fields defined by a differential filter. Math. Models Methods Appl. Sci. 14(4), 603–618 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dunca, A., Lewandowski, R.: Modeling error in approximate deconvolution models. Commun. Math. Sci. 12(4), 757–778 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Foias, C., Holm, D., Titi, E.: The Navier–Stokes-alpha model of fluid turbulence. Phys. D 152–153, 505–519 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Foias, C., Holm, D., Titi, E.: The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory. J. Dyn. Differ. Equ. 14, 1–35 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Galdi, G.P.: An introduction to the Navier–Stokes initial boundary value problem. In: Galdi, G.P., Heywood, J., Rannacher, R. (eds.) Fundamental Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics, vol. 1, pp. 1–98. Birkhauser, Basel (2000)CrossRefGoogle Scholar
  15. 15.
    Galvin, K., Rebholz, L., Trenchea, C.: Efficient, unconditionally stable, and optimally accurate FE algorithms for approximate deconvolution models. SIAM J. Numer. Anal. 52(2), 678–707 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Germano, M.: Differential filters for the large eddy numerical simulation of turbulent flows. Phys. Fluids 29, 1755–1757 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Germano, M.: Differential filters of elliptic type. Phys. Fluids 29, 1757–1758 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Morales Hernandez, M., Rebholz, L., Tone, C., Tone, F., Tone, F.: On the stability of the crank–Nicolson–Adams–Bashforth scheme for the 2D Leray-alpha model. Numer. Methods Partial Differ. Equ. 32(4), 1155–1183 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Heywood, J.G.: The Navier–Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ilyin, A., Lunasin, E., Titi, E.: A modified-Leray-\(\alpha \) subgrid scale model of turbulence. Nonlinearity 19, 879–897 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kaya, S., Manica, C., Rebholz, L.: On Crank–Nicolson Adams–Bashforth timestepping for approximate deconvolution models in two dimensions. Appl. Math. Comput. 246, 23–38 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kaya, S., Manica, C.C.: Convergence analysis of the finite element method for a fundamental model in turbulence. Math. Models Methods Appl. Sci. 22, 1250033 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kolmogorov, A.V.: The local structure of turbulence in incompressible viscous fluids for very large Reynolds number. Dokl. Akad. Nauk. SSR 30, 9–13 (1941)MathSciNetGoogle Scholar
  24. 24.
    Larios, A., Titi, E.: On the higher order global regularity of the inviscid Voigt-regularization three-dimensional hidrodynamic models. Discrete Contin. Dyn. Syst. Ser. B 14(2), 603–627 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Layton, W.: Introduction to the Numerical Analysis of Incompressible Viscous Flows. SIAM Publications, Philadelphia. ISBN:978-0-898716-57-3 (2008)Google Scholar
  26. 26.
    Layton, W., Lewandowski, R.: A simple and stable scale similarity model for large scale eddy simulation: energy balance and existence of weak solutions. Appl. Math. Lett. 16, 1205–1209 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Layton, W., Lewandowski, R.: On a well-posed turbulence model. Discrete Contin. Dyn. Syst. Seri. B 6(1), 111–128 (2006)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Layton, W., Lewandowski, R.: A high accuracy Leray-deconvolution model of turbulence and its limiting behavior. Anal. Appl. (Singap.) 6(1), 23–49 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Layton, W., Manica, C., Neda, M., Rebholz, L.: Numerical analysis and computational testing of a high-order Leray-deconvolution turbulence model. Numer. Methods Partial Differ. Equ. 24(2), 555–582 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    Layton, W., Manica, C., Neda, M., Rebholz, L.: Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations. Comput. Methods Appl. Mech. Eng. 199, 916–931 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Leray, J.: Essay sur les mouvements plans d’une liquide visqueux que limitent des parois. J. Math. Pure Appl. Paris Ser. IX 13, 331–418 (1934)zbMATHGoogle Scholar
  32. 32.
    Leray, J.: Sur les mouvements d’une liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Linshiz, J., Titi, E.S.: On the convergence rate of the Euler-\(\alpha \), inviscid second-grade fluid, model to the Euler equations. J. Stat. Phys. 138(1), 305–332 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Miles, W., Rebholz, L.: An enhanced physics based scheme for the NS-alpha turbulence model. Numer. Methods Partial Differ. Equ. 26, 1530–1555 (2010)zbMATHGoogle Scholar
  35. 35.
    Mullen, J.S., Fischer, P.F.: Filtering techniques for complex geometry fluid flows. Commun. Numer. Methods Eng. 15, 9–18 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Prodi, G.: Un teorema di unicit‘a per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rebholz, L., Kim, T.-Y., Byon, Young-Li: On an accurate \(\alpha \) model for coarse mesh turbulent channel flow simulation. Appl. Math. Model. 43, 139–154 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Langer, R.E. (ed.), Nonlinear Problems, vol. 9. University of Wisconsin Press, Madison (1963)Google Scholar
  39. 39.
    Vishik, M.I., Titi, E.S., Chepyzhov, V.V.: Trajectory attractor approximations of the 3D Navier–Stokes system by the Leray-\(\alpha \) model. Russ. Math. Dokladi 71, 91–95 (2005)Google Scholar
  40. 40.
    Zhou, Y., Hossain, M., Vahala, G.: A critical look at the use of filters in large eddy simulation. Phys. Lett. A 139, 330–332 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations