Journal of Mathematical Fluid Mechanics

, Volume 20, Issue 3, pp 1093–1121 | Cite as

\({\varvec{L}}^{\varvec{q}}\)-Helmholtz Decomposition on Periodic Domains and Applications to Navier–Stokes Equations

  • Jens Babutzka
  • Peer Christian KunstmannEmail author


We prove the existence of the Helmholtz decomposition \( L^q(\Omega _{\mathrm {p}},\mathbb {C}^d)=L_\sigma ^q(\Omega _{\mathrm {p}})\oplus G^q(\Omega _{\mathrm {p}})\) for periodic domains \(\Omega _{\mathrm {p}}\subseteq \mathbb {R}^d\) with respect to a lattice \(L\subseteq \mathbb {R}^d\), i.e. \(\Omega _{\mathrm {p}}=\Omega _{\mathrm {p}}+z\) for all \(z\in L\), and for a suitable range of q depending on the regularity of the boundary. The proof of the Helmholtz decomposition builds upon recent Bloch multiplier theorems due to B. Barth. We give several applications to Stokes operators and Navier–Stokes equations on such domains.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Abels, H.: Nonlinear elliptic and parabolic problems: a special tribute to the work of Herbert Amann, ch. Bounded Imaginary Powers and \(H^\infty \)-Calculus of the Stokes Operator in Unbounded Domains, pp. 1–15, Birkhäuser Basel, Basel (2005)Google Scholar
  2. 2.
    Babutzka, J.: \(L^q\)-Helmholtz decomposition and \(L^q\)-spectral theory for the Maxwell operator on periodic domains, Ph.D. thesis, KIT, Karlsruhe (2016)Google Scholar
  3. 3.
    Barth, B.: The Bloch Transform on \(L^p\)-Spaces, Ph.D. thesis, KIT, Karlsruhe (2013)Google Scholar
  4. 4.
    Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1976)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bloch, F.: Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift fur Physik 52, 555–600 (1929)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Calderón, A.P.: Lebesgue spaces of differentiable functions and distributions. Proc. Symp. Pure Math. 4, 33–49 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dörfler, W., Lechleiter, A., Plum, M., Schneider, G., Wieners, C.: Photonic Crystals: Mathematical Analysis and Numerical Approximation, 1st edn. Birkhäuser Verlag, Basel (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Edmunds, D.E., Evans, W.D.: Hardy Operators, Function Spaces and Embeddings. Springer Monographs in Mathematics. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Farwig, R., Kozono, H., Sohr, H.: An \(L^q\)-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195(1), 21–53 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Farwig, R., Kozono, H., Sohr, H.: The Helmholtz decomposition in arbitrary unbounded domains—a theory beyond \(L^2\). Proc. Equadiff 11, 77–85 (2005)Google Scholar
  11. 11.
    Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains. Archiv der Mathematik 88(3), 239–248 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev–Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159, 323–368 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Farwig, R., Sohr, H.: Helmholtz decomposition and Stokes resolvent system for aperture domains in \(L^q\)-spaces. Analysis 16, 1–26 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems, 2nd edn. Springer, New York (2011)zbMATHGoogle Scholar
  15. 15.
    Geng, J.: \(W^{1, p}-\)estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains. Adv. Math. 229(4), 2427–2448 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Geissert, M., Heck, H., Hieber, M., Sawada, O.: Weak Neumann implies Stokes. J. Reine Angew. Math. 669, 75–100 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in \(L^r\)-spaces. Math. Z 178, 297–329 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Geissert, M., Kunstmann, P.C.: Weak Neumann implies \(H^\infty \) for Stokes. J. Math. Soc. Jpn. 67(1), 183–193 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gopalakrishnan, J., Qiu, W.: Partial expansion of a Lipschitz domain and some applications. Front. Math. China 7(2), 249–272 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Haak, B., Kunstmann, P.: On Kato’s method for Navier–Stokes equations. J. Math. Fluid Mech. 11(4), 492–535 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jones, P .W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147(1), 71–88 (1981). (English)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kuchment, P.: An overview of periodic elliptic operators, to appear in Bulletin AMS (2016)Google Scholar
  23. 23.
    Kunstmann,P.C., Weis, L.: Maximal \(L^p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional Calculus. In: Iannelli, M. et al. (ed.) Functional Analytic Methods for Evolution Equations, Springer Lecture Notes 1855, pp. 65–311 (2004)Google Scholar
  24. 24.
    Lang, J., Mendez, O.: Potential techniques and regularity of boundary value problems in exterior non-smooth domains. Potential Anal. 24(4), 385–406 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ladyzhenskaya, O .A., Solonnikov, V .A.: Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier–Stokes equations. V. A. Steklova AN SSSR 59, 81–116 (1976)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995)CrossRefzbMATHGoogle Scholar
  27. 27.
    Maslennikova, V.N., Bogovskii, M.E.: Approximation of potential and solenoidal vector fields. Sibirskii Matematicheskii Zhurnal 24(5), 149–171 (1983)MathSciNetGoogle Scholar
  28. 28.
    Maslennikova, V.N., Bogovskii, M.E.: Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries. Rend. Sem. Mat. Fis. Milano 56, 125–138 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mitrea, Dorina: Sharp \(L^p\)-Hodge decompositions for Lipschitz domains in \(\mathbb{R}^2\). Adv. Differ. Equ. 7(3), 343–364 (2002)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Miyakawa, T.: The Helmholtz decomposition of vector fields in some unbounded domains. Math. J. Toyama Univ. 17, 115–149 (1994)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Mitrea, Marius, Taylor, Michael: Potential theory on Lipschitz domains in Riemannian manifolds: \(L^P\) Hardy, and Hölder space results. Comm. Anal. Geom. 9(2), 369–421 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Berlin (2012)zbMATHGoogle Scholar
  33. 33.
    Shen, Z.: Resolvent estimates in \(L^p\) for the Stokes operator in Lipschitz domains. Arch. Ration. Mech. Anal. 205(2), 395–424 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sobolev, S.L.: The density of finite functions in the space \(L_p^{(m)}(E_n)\). Soviet Math. Dokl. 4, 313–316 (1963)Google Scholar
  35. 35.
    Smith, W., Stegenga, D.A.: Hölder domains and Poincaré domains. Trans. Am. Math. Soc. 319(1), 67–100 (1990)zbMATHGoogle Scholar
  36. 36.
    Simader, C.G., Sohr, H.: A New Approach to the Helmholtz Decomposition and the Neumann Problem in \(L^q\)-spaces for Bounded and Exterior Domains. Mathematical problems relating to the Navier–Stokes equation, pp. 1–35. World Scientific Publishing Co., River Edge, NJ (1992)zbMATHGoogle Scholar
  37. 37.
    Sohr, H., Thäter, G.: Imaginary powers of second order differential operators and \(L^q-\)Helmholtz decomposition in the infinite cylinder. Mathematische Annalen 311, 577–602 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Monographs in harmonic analysis. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT) Institute for AnalysisKarlsruheGermany

Personalised recommendations