Journal of Mathematical Fluid Mechanics

, Volume 20, Issue 3, pp 929–935 | Cite as

A Weighted Sturm–Liouville Problem Related to Ocean Flows

  • Kateryna MarynetsEmail author


We discuss some existence and uniqueness results for the solutions to a two-point boundary-value problem that models the flow of the Antarctic Circumpolar Current in rotating spherical coordinates.


Sturm–Liouville problem Ocean gyre 

Mathematics Subject Classification

Primary 34B15 Secondary 86A05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic circumpolar current. J. Phys. Oceanogr. 46, 3585–3594 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Constantin, A., Monismith, S.G.: Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511–528 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Walton, D.W.H.: Antarctica: Global Science from a Frozen Continent. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  4. 4.
    Chu, J.: On a differential equation arising in geophysics. Monatsh Math. (2017). Google Scholar
  5. 5.
    Constantin, A., Johnson, R.S.: Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Proc. R. Soc. Lond. A 473, 20170063 (2017)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Marynets, K.: On a two-point boundary-value problem in geophysics, Appl. Anal.
  7. 7.
    Viudez, A., Dritschel, D.G.: Vertical velocity in mesoscale geophysical flows. J. Fluid Mech. 483, 199–223 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Jonsson, I.G.: Wave-current interactions. In: Le Méhauté, B., Hanes, D.M. (eds.) The Sea. Ocean Eng. Sc., vol. 9(A), pp. 65–120. Wiley, Hoboken (1990)Google Scholar
  10. 10.
    Constantin, A., Strauss, W., Varvaruca, E.: Global bifurcation of steady gravity water waves with critical layers. Acta Math. 217, 195–262 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ewing, J.A.: Wind, wave and current data for the design of ships and offshore structures. Mar. Struct. 3, 421–459 (1990)CrossRefGoogle Scholar
  12. 12.
    Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935–1945 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Constantin, A.: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)CrossRefGoogle Scholar
  14. 14.
    Henry, D.: Large amplitude steady periodic waves for fixed-depth rotational flows. Commun. Partial Differ. Equ. 38, 1015–1037 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Thomas, G.P.: Wave-current interactions: an experimental and numerical study. J. Fluid Mech. 216, 505–536 (1990)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B/Fluids 38, 18–21 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Henry, D.: Equatorially trapped nonlinear water waves in a-plane approximation with centripetal forces. J. Fluid Mech. 804, R1 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Henry, D., Sastre-Gomez, S.: Mean flow velocities and mass transport for equatorially-trapped water waves with an underlying current. J. Math. Fluid Mech. 18, 795–804 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sanjurjo, A.R., Kluczek, M.: Mean flow properties for equatorially trapped internal water wave-current interactions. Appl. Anal. 96, 2333–2345 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Stakgold, I., Holst, M.: Green’s Functions and Boundary Value Problems. Wiley, Hoboken (2011)CrossRefzbMATHGoogle Scholar
  24. 24.
    Richardson, R.: Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order. Am. J. Math. 60, 283–316 (1918)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Atkinson, F.V., Mingarelli, A.B.: Asymptotics of the number of zeros and of the eigenvalues of general-weighted Sturm-Liouville problems. J. Reine Angew. Math. 375(376), 380–393 (1987)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Constantin, A.: A general-weighted Sturm-Liouville problem. Annali della Scuola Normale, serie 4, 24(4), 767–782 (1997)Google Scholar
  27. 27.
    Magnus, W., Winkler, S.: Hill’s Equation. Interscience Publ, New York (1966)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsUzhhorod National UniversityUzhhorodUkraine

Personalised recommendations