On Joint Functional Calculus for Ritt Operators

  • Parasar MohantyEmail author
  • Samya Kumar Ray


In this paper, we study joint functional calculus for commuting n-tuple of Ritt operators. We provide an equivalent characterisation of boundedness for joint functional calculus for Ritt operators on \(L^p\)-spaces, \(1< p<\infty ,\) where each of them admits a bounded functional calculus. We also investigate joint similarity problem for commuting n-tuple of Ritt operators. We get our results by proving a suitable multivariable transfer principle between sectorial and Ritt operators as well as an appropriate joint dilation result in a general setting.


Bounded functional calculus Ritt operators Sectorial operators 

Mathematics Subject Classification

Primary 47A60 Secondary 47A20 



We are thankful to Prof. C. Le Merdy for exposing us to the theory of Ritt operators and suggesting the problem as well as many valuable discussions and suggestions during this work. We appreciate Sayantan Chakrabarty’s help in drawing the pictures.


  1. 1.
    Akcoglu, M.A., Sucheston, L.: Dilations of positive contractions on \(L_p\) spaces. Can. Math. Bull. 20(3), 285–292 (1977)CrossRefGoogle Scholar
  2. 2.
    Albrecht, D.W.: Functional calculi of commuting unbounded operators. Dissertation, Monash University (1994)Google Scholar
  3. 3.
    Ando, T.: On a pair of commutative contractions. Acta Sci. Math. (Szeged) 24, 88–90 (1963)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Arhancet, C., Le Merdy, C.: Dilation of Ritt operators on \(L^p\)-spaces. Isr. J. Math. 201(1), 373–414 (2014)CrossRefGoogle Scholar
  5. 5.
    Arhancet, C., Fackler, S., Le Merdy, C.: Isometric dilations and \(H^{\infty }\) calculus for bounded analytic semigroups and Ritt operators. Trans. Am. Math. Soc. 369(10), 6899–6933 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bourgain, J.: Vector-valued singular integrals and the \(\text{H}^1\)-\(\text{ BMO }\) duality. In: Monograph Textbooks Pure and Applied Mathematics, vol. 98, pp. 1–19. Dekker, New York (1986)Google Scholar
  7. 7.
    Coifman, R.R., Weiss, G.: Transference methods in analysis. In: Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31. American Mathematical Society, Providence (1976)Google Scholar
  8. 8.
    Coifman, R.R., Rochberg, R., Guido, W.: Applications of transference: the \(L^{p}\) version of von Neumanns inequality and the Littlewood–Paley–Stein theory. In: Linear Spaces and Approximation, International Series of Numerical Mathematics, vol. 40, pp. 53–67. Birkhäuser, BaselGoogle Scholar
  9. 9.
    Cowling, M., doust, I., McIntosh, A., Yagi, A.: Banach space operators with a bounded \(H^\infty \) functional calculus. J. Aust. Math. Soc. Ser. A 60(1), 51–89 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Delaubenfels, R.: Similarity to a contraction, for power-bounded operators with finite peripheral spectrum. Trans. Am. Math. Soc. 350(8), 3169–3191 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dore, G., Alberto, V.: \(H^\infty \) functional calculus for sectorial and bisectorial operators. Stud. Math. 166(3), 221–241 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fendler, G.: Dilations of one parameter semigroups of positive contractions on \(L^p\) spaces. Can. J. Math. 49(4), 736–748 (1997)CrossRefGoogle Scholar
  13. 13.
    Franks, E., McIntosh, A.: Discrete quadratic estimates and holomorphic functional calculi in Banach spaces. Bull. Aust. Math. Soc. 58(2), 271–290 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gupta, R., Ray, S.K.: On a Question of N. Th. Varopoulos and the constant \(C_2 (n)\) Ann. Inst. Fourier (Grenoble) 68(6), 2613–2634 (2018)Google Scholar
  15. 15.
    Halmos, P.R.: Ten problems in Hilbert space. Bull. Am. Math. Soc. 76, 887–933 (1970)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kalton, N.J., Kucherenko, T.: Sectorial operators and interpolation theory. Interpolation Theory and Applications. Contemporary Mathematics, vol. 445, pp. 111–119. American Mathematical Society, Providence (2007)CrossRefGoogle Scholar
  17. 17.
    Kalton, N.J., Weis, L.: The \(H^{\infty }\) calculus and sums of closed operators. Math. Ann. 321(2), 319–345 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Krengel, U.: Ergodic Theorems. With a supplement by Antoine Brunel. De Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter & Co., Berlin (1985)Google Scholar
  19. 19.
    Lancien, F., Le Merdy, C.: On functional calculus properties of Ritt operators. Proc. R. Soc. Edinb. Sect. A 145(6), 1239–1250 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lancien, F., Gilles, L., Le Merdy, C.: A joint functional calculus for sectorial operators with commuting resolvents. Proc. Lond. Math. Soc. (3) 77(2), 387–414 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Le Merdy, C.: \(H^\infty \) functional calculus and square function estimates for Ritt operators. Rev. Mat. Iberoam. 30(4), 1149–1190 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Le Merdy, C.: The similarity problem for bounded analytic semigroups on Hilbert space. Semigroup Forum 56(2), 205–224 (1998)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Le Merdy, C., Xu, Q.: Maximal theorems and square functions for analytic operators on \(L_p\)-spaces. J. Lond. Math. Soc. (2) 86(2), 343–365 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    McIntosh, A.: Operators which have an \(H_{\infty }\) functional calculus. In: Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986), Proceedings of the Centre for Mathematical Analysis, Australian National University, 14. Australian National University, Canberra, pp. 210–231 (1986)Google Scholar
  25. 25.
    Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics, vol. 78. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  26. 26.
    Paulsen, V.: Every completely polynomially bounded operator is similar to a contraction. J. Funct. Anal. 55(1), 1–17 (1984)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Peller, V.V.: Analogue of an inequality of J. von Neumann, isometric dilation of contractions, and approximation by isometries in spaces of measurable functions. Spectral theory of functions and operators, II. Trudy Mat. Inst. Steklov. 155, pp. 103–150, 185 (1981)Google Scholar
  28. 28.
    Petrović, S.: Polynomially unbounded product of two polynomially bounded operators. Integral Equ. Oper. Theory 27(4), 473–477 (1997)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pisier, G.: Similarity Problems and Completely Bounded Maps. Second, Expanded Edition. Includes the Solution to “The Halmos Problem”. Lecture Notes in Mathematics, vol. 1618. Springer, Berlin (2001)CrossRefGoogle Scholar
  30. 30.
    Pisier, G.: A polynomially bounded operator on Hilbert space which is not similar to a contraction. J. Am. Math. Soc. 10(2), 351–369 (1997)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pisier, G.: Joint similarity problems and the generation of operator algebras with bounded length. Integral Equ. Oper. Theory 31(3), 353–370 (1998)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ray, S.K.: On Multivariate Matsaev’s Conjecture (2017). arXiv preprint arXiv:1703.00733
  33. 33.
    Ray, S.K.: On Functional Calculus For \( n \)-Ritt operators (2017). arXiv preprint arXiv:1706.05856
  34. 34.
    Sz.-Nagy, B., Foias, C.: Harmonic Analysis of Operators on Hilbert Spaces. Translated from the French and revised North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadmiai Kiad, Budapest (1970)Google Scholar
  35. 35.
    Varopoulos, N.T.: On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory. J. Funct. Anal. 16, 83–100 (1974)MathSciNetCrossRefGoogle Scholar
  36. 36.
    von Neumann, J.: Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes. Math. Nachr. 4, 258–281 (1951)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Weis, L.: The \(H^\infty \) holomorphic functional calculus for sectorial operators—a survey. In: Koelink, E., et al. (eds.) Partial Differential Equations and Functional Analysis. Operator Theory: Advances and Applications, vol. 168, pp. 263–294. Basel, Birkhäuser (2006)CrossRefGoogle Scholar
  38. 38.
    Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319(4), 735–758 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsIndian Institute of TechnologyKanpurIndia
  2. 2.School of Mathematics and StatisticsWuhan UniversityWuhanChina

Personalised recommendations