Volterra Type Operators Between Bloch Type Spaces and Weighted Banach Spaces

  • Qingze LinEmail author


When the weight \(\mu \) is more general than normal, the complete characterizations in terms of the symbol g and weights for the conditions of the boundedness and compactness of \(T_g: H^{\infty }_\nu \rightarrow H^{\infty }_\mu \) and \(S_g: H^{\infty }_\nu \rightarrow H^{\infty }_\mu \) are still unknown. Smith et al. firstly gave the sufficient and necessary conditions for the boundedness of Volterra type operators on Banach spaces of bounded analytic functions when the symbol functions are univalent. In this paper, continuing their lines of investigations, we give the complete characterizations of the conditions for the boundedness and compactness of Volterra type operators \(T_g\) and \(S_g\) between Bloch type spaces \({\mathcal {B}}^\infty _\nu \) and weighted Banach spaces \(H^{\infty }_\nu \) with more general weights, which generalize their works.


Volterra type operator Boundedness Compactness Weighted Banach space Bloch type space 

Mathematics Subject Classification

Primary 47G10 Secondary 30H05 



It is a pleasure to express our gratitude to the referee for his(or her) valuable comments and helpful suggestions which have greatly improved the appearance of this paper.


  1. 1.
    Aleman, A., Cima, J.: An integral operator on \(H^p\) and Hardy’s inequality. J. Anal. Math. 85, 157–176 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aleman, A., Siskakis, A.: An integral operator on \(H^p\). Complex Var. Theory Appl. 28(2), 149–158 (1995)zbMATHGoogle Scholar
  3. 3.
    Aleman, A., Siskakis, A.: Integration operators on Bergman spaces. Indiana Univ. Math. J. 46(2), 337–356 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Anderson, A., Jovovic, M., Smith, W.: Some integral operators acting on \(H^\infty \). Integral Equ. Oper. Theory 80(2), 275–291 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Anderson, A.: Some closed range integral operators on spaces of analytic functions. Integral Equ. Oper. Theory 69, 87–99 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Basallote, M., Contreras, M., Hernández-Mancera, C., Martín, M., Paúl, P.: Volterra operators and semigroups in weighted Banach spaces of analytic functions. Collect. Math. 65(2), 233–249 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bierstedt, K., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on balanced domains. Mich. Math. J. 40, 271–297 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bierstedt, K., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 70–79 (1998)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Constantin, O., Peláez, J.: Integral operators, embedding theorems and a Littlewood–Paley formula on weighted Fock spaces. J. Geom. Anal. 26(2), 1109–1154 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Contreras, M., Hernandez-Diaz, A.: Weighted composition operators in weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 69(1), 41–60 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Contreras, M., Peláez, J., Pommerenke, C., Rättyä, J.: Integral operators mapping into the space of bounded analytic functions. J. Funct. Anal. 271(10), 2899–2943 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Eklund, T., Lindström, M., Pirasteh, M., Sanatpour, A., Wikman, N.: Generalized Volterra operators mapping between Banach spaces of analytic functions. Monatsh. Math. (2018). CrossRefGoogle Scholar
  13. 13.
    Galanopoulos, P., Girela, D., Peláez, J.: Multipliers and integration operators on Dirichlet spaces. Trans. Am. Math. Soc. 363(4), 1855–1886 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Girela, D., Peláez, J.: Carleson measures, multipliers and integration operators for spaces of Dirichlet type. J. Funct. Anal. 241(1), 334–358 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hardy, G., Littlewood, J.: Some properties of fractional integrals. II. Math. Z. 34(1), 403–439 (1932)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Laitila, J., Miihkinen, S., Nieminen, P.: Essential norms and weak compactness of integration operators. Arch. Math. 97(1), 39–48 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lin, Q., Liu, J., Wu, Y.: Volterra type operators on \(S^p({\mathbb{D}})\) spaces. J. Math. Anal. Appl. 461, 1100–1114 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lusky, W.: Growth Conditions for Harmonic and Holomorphic Functions, Functional Analysis (Trier, 1994), pp. 281–291. de Gruyter, Berlin (1996)Google Scholar
  19. 19.
    Manhas, J., Zhao, R.: Products of weighted composition operators and differentiation operators between Banach spaces of analytic functions. Acta Sci. Math. (Szeged) 80, 665–679 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mengestie, T.: Product of Volterra type integral and composition operators on weighted Fock spaces. J. Geom. Anal. 24(2), 740–755 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Miihkinen, S.: Strict singularity of a Volterra-type integral operator on \(H^p\). Proc. Am. Math. Soc. 145(1), 165–175 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Montes-Rodríguez, A.: Weighted composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 61(2), 872–884 (2000)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pommerenke, Ch.: Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften 299. Springer-Verlag, Berlin (1992)CrossRefGoogle Scholar
  24. 24.
    Pommerenke, Ch.: Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation (German). Comment. Math. Helv. 52(4), 591–602 (1977)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Shields, A., Williams, D.: Bounded projections and the growth of harmonic conjugates in the unit disc. Mich. Math. J. 29(1), 3–25 (1982)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Smith, W., Stolyarov, D., Volberg, A.: Uniform approximation of Bloch functions and the boundedness of the integration operator on \(H^\infty \). Adv. Math. 314, 185–202 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wolf, E.: Composition followed by differentiation between weighted Banach spaces of holomorphic functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105(2), 315–322 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Xiao, J.: The \(Q_p\) Carleson measure problem. Adv. Math. 217(5), 2075–2088 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zorboska, N.: Intrinsic operators from holomorphic function spaces to growth spaces. Integral Equ. Oper. Theory 87(4), 581–600 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Applied MathematicsGuangdong University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations