Busch–Gudder metric on the Cone of Positive Semidefinite Operators and Its Isometries

Article
  • 13 Downloads

Abstract

In this paper we introduce a new distance measure called Busch–Gudder metric on the cone of all positive semidefinite operators acting on a complex Hilbert space. It is defined as the sup-distance between the so-called strength functions corresponding to positive semidefinite operators. We investigate the properties of that metric, among others its relation to the metric induced by the operator norm. We show that in spite of many dissimilarities between the topological features of those two metrics, their isometry groups still coincide.

Keywords

Positive cone Positive operators Strength functions Busch–Gudder metric Operator norm Isometries 

Mathematics Subject Classification

Primary 47B49 47B65 Secondary 54G99 

Notes

Acknowledgements

The author is grateful to the referee for his/her comments which have helped to improve the presentation of the paper.

References

  1. 1.
    Ando, T.: Problem of infimum in the positive cone. In: Rassias, T.M., Srivastava, H.M. (eds.) Analytic and Geometric Inequalities and Applications. Mathematics and Its Applications, vol. 478, pp. 1–12. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  2. 2.
    Botelho, F., Jamison, J., Molnár, L.: Surjective isometries on Grassmann spaces. J. Funct. Anal. 265, 2226–2238 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Busch, P., Gudder, S.P.: Effects as functions on projective Hilbert spaces. Lett. Math. Phys. 47, 329–337 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cassinelli, G., De Vito, E., Lahti, P., Levrero, A.: A theorem of Ludwig revisited. Found. Phys. 30, 1757–1763 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Das, M., Sahoo, M.: Positive Toeplitz operators on the Bergman space. Ann. Funct. Anal. 4, 171–182 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dolinar, G., Molnár, L.: Isometries of the space of distribution functions with respect to the Kolmogorov-Smirnov metric. J. Math. Anal. Appl. 348, 494–498 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Douglas, R.G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17, 413–415 (1966)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fillmore, P.A., Williams, J.P.: On operator ranges. Adv. Math. 7, 254–281 (1971)CrossRefMATHGoogle Scholar
  9. 9.
    Kadison, R.V.: Order properties of bounded self-adjoint operators. Proc. Am. Math. Soc. 2, 505–510 (1951)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kadison, R.V.: A generalized Schwarz inequality and algebraic invariants for operator algebras. Ann. Math. 56, 494–503 (1952)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Mankiewicz, P.: On extension of isometries in normed linear spaces. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 20, 367–371 (1972)Google Scholar
  12. 12.
    Molnár, L.: Order-automorphisms of the set of bounded observables. J. Math. Phys. 42, 5904–5909 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Molnár, L.: Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces. Lecture Notes in Mathematics, vol. 1895, p. 236. Springer (2007)Google Scholar
  14. 14.
    Molnár, L.: Maps preserving the geometric mean of positive operators. Proc. Am. Math. Soc. 137, 1763–1770 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Molnár, L.: Maps preserving the harmonic mean or the parallel sum of positive operators. Linear Algebra Appl. 430, 3058–3065 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Molnár, L.: Maps preserving general means of positive operators. Electron. J. Linear Algebra 22, 864–874 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Molnár, L.: The arithmetic, geometric and harmonic means in operator algebras and transformations among them. In: Botelho, F., King, R., Rao, T.S.S.R.K. (eds.) Recent Methods and Research Advances in Operator Theory, Contemporary Mathematics, vol. 687, pp. 193–207. American Mathematical Society, Providence (2017)Google Scholar
  18. 18.
    Molnár, L., Szokol, P.: Transformations preserving norms of means of positive operators and nonnegative functions. Integral Equ. Oper. Theory 83, 271–290 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Šemrl, P.: Symmetries of Hilbert space effect algebras. J. Lond. Math. Soc. 88, 417–436 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Functional Analysis Research Group Bolyai InstituteUniversity of SzegedSzegedHungary
  2. 2.Institute of MathematicsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations