Advertisement

Amyotrophic lateral sclerosis-linked UBQLN2 mutants inhibit endoplasmic reticulum to Golgi transport, leading to Golgi fragmentation and ER stress

  • Mark Halloran
  • Audrey M. G. Ragagnin
  • Marta Vidal
  • Sonam Parakh
  • Shu Yang
  • Benjamin Heng
  • Natalie Grima
  • Hamideh Shahheydari
  • Kai-Ying Soo
  • Ian Blair
  • Gilles J. Guillemin
  • Vinod Sundaramoorthy
  • Julie D. AtkinEmail author
Original Article

Abstract

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative diseases that are related genetically and pathologically. Mutations in the UBQLN2 gene, encoding the ubiquitin-like protein ubiquilin2, are associated with familial ALS/FTD, but the pathophysiological mechanisms remain unclear. Here, we demonstrate that ALS/FTD UBQLN2 mutants P497H and P506T inhibit protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus in neuronal cells. In addition, we observed that Sec31-positive ER exit sites are clustered in UBQLN2T487I patient spinal cord tissues. Both the ER–Golgi intermediate (ERGIC) compartment and the Golgi become disorganised and fragmented. This activates ER stress and inhibits ER-associated degradation. Hence, this study highlights perturbations in secretory protein trafficking and ER homeostasis as pathogenic mechanisms associated with ALS/FTD-associated forms of UBQLN2.

Keywords

Amyotrophic lateral sclerosis ER-Golgi trafficking ER stress Ubiquilin-2 Unfolded protein response Golgi fragmentation 

Notes

Author contributions

All authors contributed to this article. JDA conceived and directed the project. JDA, MH, AMGR, K-YS, and VS designed the experiments. MH, AMGR designed and prepared the UBQLN2 constructs. HS helped to design the UBQLN2 constructs. MH performed and analysed experiments in Neuro2A cells (ER–Golgi transport, Golgi and ERGIC fragmentation, ER stress). AMGR performed and analysed the ERAD assay. MV, BH and SP performed and analysed experiments in human primary neurons. NG and SY performed and analysed experiments in human sections. MH, AMGR and JDA wrote, edited and revised the manuscript. All authors discussed results and commented on the manuscript.

Supplementary material

18_2019_3394_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2875 kb)

References

  1. 1.
    Cleveland DW, Rothstein JD (2001) From charcot to lou gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2:806–819.  https://doi.org/10.1038/35097565 CrossRefPubMedGoogle Scholar
  2. 2.
    Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65:S3–S9CrossRefGoogle Scholar
  3. 3.
    Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3CrossRefGoogle Scholar
  4. 4.
    Yamashita S, Ando Y (2015) Genotype-phenotype relationship in hereditary amyotrophic lateral sclerosis. Transl Neurodegener.  https://doi.org/10.1186/s40035-015-0036-y CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Taylor JP, Brown RH, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206.  https://doi.org/10.1038/nature20413 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Deng HX, Chen W, Hong ST et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215CrossRefGoogle Scholar
  7. 7.
    Fahed AC, McDonough B, Gouvion CM et al (2014) UBQLN2 mutation causing heterogeneous X-linked dominant neurodegeneration. Ann Neurol 75:793–798.  https://doi.org/10.1002/ana.24164 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gellera C, Tiloca C, Bo RD et al (2012) Ubiquilin 2 mutations in Italian patients with amyotrophic lateral sclerosis and frontotemporal dementia. J Neurol Neurosurg Psychiatry.  https://doi.org/10.1136/jnnp-2012-303433 CrossRefPubMedGoogle Scholar
  9. 9.
    Synofzik M, Maetzler W, Grehl T et al (2012) Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype. Neurobiol Aging 33:2949.e13–2949.e17.  https://doi.org/10.1016/j.neurobiolaging.2012.07.002 CrossRefGoogle Scholar
  10. 10.
    Williams KL, Warraich ST, Yang S et al (2012) UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol Aging 33:2527.e3–2527.e10.  https://doi.org/10.1016/j.neurobiolaging.2012.05.008 CrossRefGoogle Scholar
  11. 11.
    Ling S-C, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438.  https://doi.org/10.1016/j.neuron.2013.07.033 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lin G, Mao D, Bellen HJ (2017) Amyotrophic lateral sclerosis pathogenesis converges on defects in protein homeostasis associated with TDP-43 mislocalization and proteasome-mediated degradation overload. Curr Top Dev Biol 121:111–171.  https://doi.org/10.1016/bs.ctdb.2016.07.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Shahheydari H, Ragagnin A, Walker AK et al (2017) Protein quality control and the amyotrophic lateral sclerosis/frontotemporal dementia continuum. Front Mol Neurosci.  https://doi.org/10.3389/fnmol.2017.00119 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Parakh S, Perri ER, Jagaraj CJ et al (2018) Rab-dependent cellular trafficking and amyotrophic lateral sclerosis. Crit Rev Biochem Mol Biol 53:623–651.  https://doi.org/10.1080/10409238.2018.1553926 CrossRefPubMedGoogle Scholar
  15. 15.
    Blokhuis AM, Groen EJN, Koppers M et al (2013) Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 125:777–794.  https://doi.org/10.1007/s00401-013-1125-6 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17.  https://doi.org/10.1038/nm1066 CrossRefPubMedGoogle Scholar
  17. 17.
    Picher-Martel V, Dutta K, Phaneuf D et al (2015) Ubiquilin-2 drives NF-κB activity and cytosolic TDP-43 aggregation in neuronal cells. Mol Brain 8:71.  https://doi.org/10.1186/s13041-015-0162-6 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ceballos-Diaz C, Rosario AM, Park H-J et al (2015) Viral expression of ALS-linked ubiquilin-2 mutants causes inclusion pathology and behavioral deficits in mice. Mol Neurodegener 10:25.  https://doi.org/10.1186/s13024-015-0026-7 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Alexander EJ, Ghanbari Niaki A, Zhang T et al (2018) Ubiquilin 2 modulates ALS/FTD-linked FUS-RNA complex dynamics and stress granule formation. Proc Natl Acad Sci USA 115:E11485–E11494.  https://doi.org/10.1073/pnas.1811997115 CrossRefPubMedGoogle Scholar
  20. 20.
    Ghaemmaghami S, Huh W-K, Bower K et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741.  https://doi.org/10.1038/nature02046 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hauri HP, Kappeler F, Andersson H, Appenzeller C (2000) ERGIC-53 and traffic in the secretory pathway. J Cell Sci 113(Pt 4):587–596PubMedGoogle Scholar
  22. 22.
    Routledge KE, Gupta V, Balch WE (2010) Emergent properties of proteostasis-COPII coupled systems in human health and disease. Mol Membr Biol 27:385–397.  https://doi.org/10.3109/09687688.2010.524894 CrossRefPubMedGoogle Scholar
  23. 23.
    Schröder M (2007) Endoplasmic reticulum stress responses. Cell Mol Life Sci 65:862–894.  https://doi.org/10.1007/s00018-007-7383-5 CrossRefGoogle Scholar
  24. 24.
    Stephens DJ, Lin-Marq N, Pagano A et al (2000) COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J Cell Sci 113(Pt 12):2177–2185PubMedGoogle Scholar
  25. 25.
    Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529CrossRefGoogle Scholar
  26. 26.
    McCaffrey K, Braakman I (2016) Protein quality control at the endoplasmic reticulum. Essays Biochem 60:227–235.  https://doi.org/10.1042/EBC20160003 CrossRefPubMedGoogle Scholar
  27. 27.
    Hirsch C, Gauss R, Horn SC et al (2009) The ubiquitylation machinery of the endoplasmic reticulum. Nature 458:453–460.  https://doi.org/10.1038/nature07962 CrossRefPubMedGoogle Scholar
  28. 28.
    Hitomi J, Katayama T, Eguchi Y et al (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol 165:347–356.  https://doi.org/10.1083/jcb.200310015 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shore GC, Papa FR, Oakes SA (2011) Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol 23:143–149.  https://doi.org/10.1016/j.ceb.2010.11.003 CrossRefPubMedGoogle Scholar
  30. 30.
    Urra H, Dufey E, Lisbona F et al (2013) When ER stress reaches a dead end. Biochimica et Biophysica Acta (BBA) Mol Cell Res 1833:3507–3517.  https://doi.org/10.1016/j.bbamcr.2013.07.024 CrossRefGoogle Scholar
  31. 31.
    Ilieva EV, Ayala V, Jové M et al (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–3123.  https://doi.org/10.1093/brain/awm190 CrossRefPubMedGoogle Scholar
  32. 32.
    Atkin JD, Farg MA, Walker AK et al (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis 30:400–407CrossRefGoogle Scholar
  33. 33.
    Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype–selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12:627–636.  https://doi.org/10.1038/nn.2297 CrossRefPubMedGoogle Scholar
  34. 34.
    Saxena S, Roselli F, Singh K et al (2013) Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival. Neuron 80:80–96.  https://doi.org/10.1016/j.neuron.2013.07.027 CrossRefPubMedGoogle Scholar
  35. 35.
    Farg MA, Soo KY, Walker AK et al (2012) Mutant FUS induces endoplasmic reticulum stress in amyotrophic lateral sclerosis and interacts with protein disulfide-isomerase. Neurobiol Aging 33:2855–2868.  https://doi.org/10.1016/j.neurobiolaging.2012.02.009 CrossRefPubMedGoogle Scholar
  36. 36.
    Soo KY, Halloran M, Sundaramoorthy V et al (2015) Rab1-dependent ER-Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS. Acta Neuropathol.  https://doi.org/10.1007/s00401-015-1468-2 CrossRefPubMedGoogle Scholar
  37. 37.
    Sundaramoorthy V, Walker AK, Yerbury J et al (2013) Extracellular wildtype and mutant SOD1 induces ER-Golgi pathology characteristic of amyotrophic lateral sclerosis in neuronal cells. Cell Mol Life Sci 70:4181–4195.  https://doi.org/10.1007/s00018-013-1385-2 CrossRefPubMedGoogle Scholar
  38. 38.
    Sundaramoorthy V, Walker AK, Tan V et al (2015) Defects in optineurin and myosin VI mediated cellular trafficking in amyotrophic lateral sclerosis. Hum Mol Genet.  https://doi.org/10.1093/hmg/ddv126 CrossRefPubMedGoogle Scholar
  39. 39.
    Walker AK, Soo KY, Sundaramoorthy V et al (2013) ALS-associated TDP-43 induces endoplasmic reticulum stress, which drives cytoplasmic TDP-43 accumulation and stress granule formation. PLoS One.  https://doi.org/10.1371/journal.pone.0081170 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chang HJ, Jesch SA, Gaspar ML, Henry SA (2004) Role of the unfolded protein response pathway in secretory stress and regulation of INO1 expression in Saccharomyces cerevisiae. Genetics 168:1899–1913.  https://doi.org/10.1534/genetics.104.032961 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Leber JH, Bernales S, Walter P (2004) IRE1-independent gain control of the unfolded protein response. PLoS Biol 2:e235.  https://doi.org/10.1371/journal.pbio.0020235 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Higashio H, Kohno K (2002) A genetic link between the unfolded protein response and vesicle formation from the endoplasmic reticulum. Biochem Biophys Res Commun 296:568–574CrossRefGoogle Scholar
  43. 43.
    Sato M, Sato K, Nakano A (2002) Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response. Biochem Biophys Res Commun 296:560–567CrossRefGoogle Scholar
  44. 44.
    Preston AM, Gurisik E, Bartley C et al (2009) Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia 52:2369–2373.  https://doi.org/10.1007/s00125-009-1506-5 CrossRefPubMedGoogle Scholar
  45. 45.
    Tsvetanova NG (2013) The secretory pathway in control of endoplasmic reticulum homeostasis. Small GTPases 4:28–33.  https://doi.org/10.4161/sgtp.22599 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    van Dis V, Kuijpers M, Haasdijk ED et al (2014) Golgi fragmentation precedes neuromuscular denervation and is associated with endosome abnormalities in SOD1-ALS mouse motor neurons. Acta Neuropathol Commun 2:38.  https://doi.org/10.1186/2051-5960-2-38 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fujita Y, Okamoto K (2005) Golgi apparatus of the motor neurons in patients with amyotrophic lateral sclerosis and in mice models of amyotrophic lateral sclerosis. Neuropathology 25:388–394CrossRefGoogle Scholar
  48. 48.
    Gonatas NK, Stieber A, Gonatas JO (2006) Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J Neurol Sci 246:21–30.  https://doi.org/10.1016/j.jns.2006.01.019 CrossRefPubMedGoogle Scholar
  49. 49.
    Ito H, Nakamura M, Komure O et al (2011) Clinicopathologic study on an ALS family with a heterozygous E478G optineurin mutation. Acta Neuropathol 122:223–229.  https://doi.org/10.1007/s00401-011-0842-y CrossRefPubMedGoogle Scholar
  50. 50.
    Wilson BS, Nuoffer C, Meinkoth JL et al (1994) A Rab1 mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus. J Cell Biol 125:557–571CrossRefGoogle Scholar
  51. 51.
    Cole NB, Ellenberg J, Song J et al (1998) Retrograde transport of Golgi-localized proteins to the ER. J Cell Biol 140:1–15CrossRefGoogle Scholar
  52. 52.
    Kleijnen MF, Shih AH, Zhou P et al (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 6:409–419CrossRefGoogle Scholar
  53. 53.
    Sifers RN, Brashears-Macatee S, Kidd VJ et al (1988) A frameshift mutation results in a truncated alpha 1-antitrypsin that is retained within the rough endoplasmic reticulum. J Biol Chem 263:7330–7335PubMedGoogle Scholar
  54. 54.
    Grotzke JE, Lu Q, Cresswell P (2013) Deglycosylation-dependent fluorescent proteins provide unique tools for the study of ER-associated degradation. Proc Natl Acad Sci USA 110:3393–3398.  https://doi.org/10.1073/pnas.1300328110 CrossRefPubMedGoogle Scholar
  55. 55.
    Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232.  https://doi.org/10.1111/j.1365-2818.2006.01706.x CrossRefPubMedGoogle Scholar
  56. 56.
    Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169:375–382.  https://doi.org/10.1111/j.1365-2818.1993.tb03313.x CrossRefGoogle Scholar
  57. 57.
    Farg MA, Soo KY, Warraich ST et al (2013) Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum Mol Genet 22:717–728.  https://doi.org/10.1093/hmg/dds479 CrossRefPubMedGoogle Scholar
  58. 58.
    Muppirala M, Gupta V, Swarup G (2011) Syntaxin 17 cycles between the ER and ERGIC and is required to maintain the architecture of ERGIC and Golgi. Biol Cell 103:333–350.  https://doi.org/10.1042/BC20110006 CrossRefPubMedGoogle Scholar
  59. 59.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676CrossRefGoogle Scholar
  60. 60.
    Presley JF, Cole NB, Schroer TA et al (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85.  https://doi.org/10.1038/38001 CrossRefPubMedGoogle Scholar
  61. 61.
    Nehls S, Snapp EL, Cole NB et al (2000) Dynamics and retention of misfolded proteins in native ER membranes. Nat Cell Biol 2:288–295.  https://doi.org/10.1038/35010558 CrossRefPubMedGoogle Scholar
  62. 62.
    Nakagomi S, Barsoum MJ, Bossy-Wetzel E et al (2008) A Golgi fragmentation pathway in neurodegeneration. Neurobiol Dis 29:221–231.  https://doi.org/10.1016/j.nbd.2007.08.015 CrossRefPubMedGoogle Scholar
  63. 63.
    Sütterlin C, Hsu P, Mallabiabarrena A, Malhotra V (2002) Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 109:359–369CrossRefGoogle Scholar
  64. 64.
    Sugawara T, Nakatsu D, Kii H et al (2012) PKCδ and ε regulate the morphological integrity of the ER—Golgi intermediate compartment (ERGIC) but not the anterograde and retrograde transports via the Golgi apparatus. Biochimica et Biophysica Acta (BBA) Mol Cell Res 1823:861–875.  https://doi.org/10.1016/j.bbamcr.2012.01.007 CrossRefGoogle Scholar
  65. 65.
    Duellman T, Burnett J, Shin A, Yang J (2015) LMAN1 (ERGIC-53) is a potential carrier protein for matrix metalloproteinase-9 glycoprotein secretion. Biochem Biophys Res Commun 464:685–691.  https://doi.org/10.1016/j.bbrc.2015.06.164 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Spatuzza C, Renna M, Faraonio R et al (2004) heat shock induces preferential translation of ERGIC-53 and affects its recycling pathway. J Biol Chem 279:42535–42544.  https://doi.org/10.1074/jbc.M401860200 CrossRefPubMedGoogle Scholar
  67. 67.
    Tomás M, Martínez-Alonso E, Ballesta J, Martínez-Menárguez JA (2010) Regulation of ER-Golgi intermediate compartment tubulation and mobility by COPI coats, motor proteins and microtubules. Traffic 11:616–625.  https://doi.org/10.1111/j.1600-0854.2010.01047.x CrossRefPubMedGoogle Scholar
  68. 68.
    Walker AK, Farg MA, Bye CR et al (2010) Protein disulphide isomerase protects against protein aggregation and is S-nitrosylated in amyotrophic lateral sclerosis. Brain 133:105–116.  https://doi.org/10.1093/brain/awp267 CrossRefPubMedGoogle Scholar
  69. 69.
    Oslowski CM, Urano F (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol 490:71–92.  https://doi.org/10.1016/B978-0-12-385114-7.00004-0 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hosokawa N, Tremblay LO, You Z et al (2003) Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I. J Biol Chem 278:26287–26294.  https://doi.org/10.1074/jbc.M303395200 CrossRefPubMedGoogle Scholar
  71. 71.
    Martínez-Menárguez JÁ, Tomás M, Martínez-Martínez N, Martínez-Alonso E (2019) Golgi fragmentation in neurodegenerative diseases: is there a common cause? Cells 8:748CrossRefGoogle Scholar
  72. 72.
    Fan J, Hu Z, Zeng L et al (2008) Golgi apparatus and neurodegenerative diseases. Int J Dev Neurosci 26:523–534CrossRefGoogle Scholar
  73. 73.
    Budnik A, Stephens DJ (2009) ER exit sites—localization and control of COPII vesicle formation. FEBS Lett 583:3796–3803CrossRefGoogle Scholar
  74. 74.
    Yerbury JJ, Ooi L, Dillin A et al (2016) Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem.  https://doi.org/10.1111/jnc.13575 CrossRefPubMedGoogle Scholar
  75. 75.
    Dinter A, Berger EG (1998) Golgi-disturbing agents. Histochem Cell Biol 109:571–590CrossRefGoogle Scholar
  76. 76.
    Lee TH, Linstedt AD (1999) Osmotically induced cell volume changes alter anterograde and retrograde transport, golgi structure, and COPI dissociation. Mol Biol Cell 10:1445–1462CrossRefGoogle Scholar
  77. 77.
    Hicks SW, Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744:406–414.  https://doi.org/10.1016/j.bbamcr.2005.03.002 CrossRefPubMedGoogle Scholar
  78. 78.
    Sundaramoorthy V, Sultana JM, Atkin JD (2015) Golgi fragmentation in amyotrophic lateral sclerosis, an overview of possible triggers and consequences. Front Neurosci.  https://doi.org/10.3389/fnins.2015.00400 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Mourelatos Z, Gonatas NK, Stieber A et al (1996) The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu, Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc Natl Acad Sci USA 93:5472–5477CrossRefGoogle Scholar
  80. 80.
    Atkin JD, Farg MA, Soo KY et al (2014) Mutant SOD1 inhibits ER-Golgi transport in amyotrophic lateral sclerosis. J Neurochem 129:190–204.  https://doi.org/10.1111/jnc.12493 CrossRefPubMedGoogle Scholar
  81. 81.
    Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190.  https://doi.org/10.1038/ncb0311-184 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Hetz C, Thielen P, Matus S et al (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 23:2294–2306.  https://doi.org/10.1101/gad.1830709 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Ito Y, Yamada M, Tanaka H et al (2009) Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice. Neurobiol Dis 36:470–476.  https://doi.org/10.1016/j.nbd.2009.08.013 CrossRefPubMedGoogle Scholar
  84. 84.
    Sasaki S (2010) Endoplasmic reticulum stress in motor neurons of the spinal cord in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 69:346–355.  https://doi.org/10.1097/NEN.0b013e3181d44992 CrossRefPubMedGoogle Scholar
  85. 85.
    Matus S, Lopez E, Valenzuela V et al (2013) Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis. PLoS One 8:e66672.  https://doi.org/10.1371/journal.pone.0066672 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kiskinis E, Sandoe J, Williams LA et al (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14:781–795.  https://doi.org/10.1016/j.stem.2014.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Appenzeller-Herzog C, Hauri H-P (2006) The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 119:2173–2183.  https://doi.org/10.1242/jcs.03019 CrossRefPubMedGoogle Scholar
  88. 88.
    Fu Y-L, Zhang B, Mu T-W (2019) LMAN1 (ERGIC-53) promotes trafficking of neuroreceptors. Biochem Biophys Res Commun 511:356–362.  https://doi.org/10.1016/j.bbrc.2019.02.053 CrossRefPubMedGoogle Scholar
  89. 89.
    Fu Y-L, Wang Y-J, Mu T-W (2016) Proteostasis maintenance of Cys-loop receptors. Adv Protein Chem Struct Biol 103:1–23.  https://doi.org/10.1016/bs.apcsb.2015.11.002 CrossRefPubMedGoogle Scholar
  90. 90.
    Kaplan A, Spiller KJ, Towne C et al (2014) Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 81:333–348.  https://doi.org/10.1016/j.neuron.2013.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Spiller KJ, Khan T, Dominique MA et al (2019) Reduction of matrix metalloproteinase 9 (MMP-9) protects motor neurons from TDP-43-triggered death in rNLS8 mice. Neurobiol Dis 124:133–140.  https://doi.org/10.1016/j.nbd.2018.11.013 CrossRefPubMedGoogle Scholar
  92. 92.
    Huang B, Wu Q, Zhou H et al (2016) Increased Ubqln2 expression causes neuron death in transgenic rats. J Neurochem 139:285–293.  https://doi.org/10.1111/jnc.13748 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Suzuki H, Lee K, Matsuoka M (2011) TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage. J Biol Chem 286:13171–13183.  https://doi.org/10.1074/jbc.M110.197483 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Jaarsma D, Haasdijk ED, Grashorn JA et al (2000) Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 7:623–643.  https://doi.org/10.1006/nbdi.2000.0299 CrossRefPubMedGoogle Scholar
  95. 95.
    Prudencio M, Durazo A, Whitelegge JP, Borchelt DR (2010) An examination of wild-type SOD1 in modulating the toxicity and aggregation of ALS-associated mutant SOD1. Hum Mol Genet 19:4774–4789.  https://doi.org/10.1093/hmg/ddq408 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Cannon AD, Zhang Y, Knight J et al (2010) Inducible expression of wild-type TDP-43 is toxic to mouse hippocampal and cortical neurons. Alzheimer’s Dement 6:S225–S226.  https://doi.org/10.1016/j.jalz.2010.05.729 CrossRefGoogle Scholar
  97. 97.
    Xu Y-F, Gendron TF, Zhang Y-J et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30:10851–10859.  https://doi.org/10.1523/JNEUROSCI.1630-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Xia Y, Yan LH, Huang B et al (2014) Pathogenic mutation of UBQLN2 impairs its interaction with UBXD8 and disrupts endoplasmic reticulum-associated protein degradation. J Neurochem 129:99–106.  https://doi.org/10.1111/jnc.12606 CrossRefPubMedGoogle Scholar
  99. 99.
    Kim T-Y, Kim E, Yoon SK, Yoon J-B (2008) Herp enhances ER-associated protein degradation by recruiting ubiquilins. Biochem Biophys Res Commun 369:741–746.  https://doi.org/10.1016/j.bbrc.2008.02.086 CrossRefPubMedGoogle Scholar
  100. 100.
    Schulze A, Standera S, Buerger E et al (2005) The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J Mol Biol 354:1021–1027.  https://doi.org/10.1016/j.jmb.2005.10.020 CrossRefPubMedGoogle Scholar
  101. 101.
    Lim PJ, Danner R, Liang J et al (2009) Ubiquilin and p97/VCP bind erasin, forming a complex involved in ERAD. J Cell Biol 187:201–217.  https://doi.org/10.1083/jcb.200903024 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Nagai A, Kadowaki H, Maruyama T et al (2009) USP14 inhibits ER-associated degradation via interaction with IRE1alpha. Biochem Biophys Res Commun 379:995–1000.  https://doi.org/10.1016/j.bbrc.2008.12.182 CrossRefPubMedGoogle Scholar
  103. 103.
    Chang L, Monteiro MJ (2015) Defective proteasome delivery of polyubiquitinated proteins by ubiquilin-2 proteins containing ALS mutations. PLoS One 10:e0130162.  https://doi.org/10.1371/journal.pone.0130162 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Nishitoh H, Kadowaki H, Nagai A et al (2008) ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22:1451–1464.  https://doi.org/10.1101/gad.1640108 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Travers KJ, Patil CK, Wodicka L et al (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mark Halloran
    • 1
  • Audrey M. G. Ragagnin
    • 1
  • Marta Vidal
    • 1
  • Sonam Parakh
    • 1
  • Shu Yang
    • 1
  • Benjamin Heng
    • 1
  • Natalie Grima
    • 1
  • Hamideh Shahheydari
    • 1
  • Kai-Ying Soo
    • 1
  • Ian Blair
    • 1
  • Gilles J. Guillemin
    • 1
  • Vinod Sundaramoorthy
    • 1
  • Julie D. Atkin
    • 1
    • 2
    Email author
  1. 1.Department of Biomedical Sciences, Faculty of Medicine and Health SciencesMacquarie UniversitySydneyAustralia
  2. 2.Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia

Personalised recommendations