Advertisement

Structure and function relationships in mammalian DNA polymerases

  • Nicole M. Hoitsma
  • Amy M. Whitaker
  • Matthew A. Schaich
  • Mallory R. Smith
  • Max S. Fairlamb
  • Bret D. FreudenthalEmail author
Review
  • 150 Downloads

Abstract

DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.

Keywords

DNA polymerase Replication DNA repair Structural biology DNA synthesis 

Notes

Acknowledgements

Nicole M. Hoitsma and Dr. Amy M. Whitaker are co-authors and equally contributed to this paper. This work was supported by the National Institutes of Environmental Health Sciences of the National Institutes of Health under award number R35GM128562. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

  1. 1.
    Wu S, Beard WA, Pedersen LG, Wilson SH (2014) Structural comparison of DNA polymerase architecture suggest a nucleotide gateway to the polymerase active site. Chem Rev 114(5):2759–2774.  https://doi.org/10.1021/cr3005179 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Delagoutte E (2012) DNA polymerases: mechanistic insight from biochemical and biophysical studies. Front Biosci (Landmark Ed) 17:509–544CrossRefGoogle Scholar
  3. 3.
    Hubscher U, Nasheuer HP, Syvaoja JE (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25(3):143–147PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Yamtich J (1804) Sweasy JB (2010) DNA polymerase family X: function, structure, and cellular roles. Biochim Biophys Acta 5:1136–1150.  https://doi.org/10.1016/j.bbapap.2009.07.008 CrossRefGoogle Scholar
  5. 5.
    Braithwaite DK, Ito J (1993) Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res 21(4):787–802PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Garcia-Diaz M, Bebenek K (2007) Multiple functions of DNA polymerases. Crit Rev Plant Sci 26(2):105–122.  https://doi.org/10.1080/07352680701252817 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hübscher U, Spadari S, Villani G, Maga G (2010) DNA polymerases discovery, characterization and functions in cellular DNA transactions. World Sci, SingaporeCrossRefGoogle Scholar
  8. 8.
    Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA (1985) Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313:762.  https://doi.org/10.1038/313762a0 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Beese LS, Derbyshire V, Steitz TA (1993) Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260(5106):352PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274(25):17395–17398.  https://doi.org/10.1074/jbc.274.25.17395 CrossRefGoogle Scholar
  11. 11.
    Sawaya MR, Pelletier H, Kumar A, Wilson SH, Kraut J (1994) Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science 264(5167):1930–1935PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256(5065):1783–1790PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Patel PH, Loeb LA (2001) Getting a grip on how DNA polymerases function. Nat Struct Biol 8(8):656–659.  https://doi.org/10.1038/90344 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Santoso Y, Joyce CM, Potapova O, Le Reste L, Hohlbein J, Torella JP, Grindley NDF, Kapanidis AN (2010) Conformational transitions in DNA polymerase I revealed by single-molecule FRET. Proc Natl Acad Sci USA 107(2):715–720.  https://doi.org/10.1073/pnas.0910909107 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Beard WA, Wilson SH (2014) Structure and mechanism of DNA polymerase β. Biochemistry 53(17):2768–2780.  https://doi.org/10.1021/bi500139h CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Doublié S, Sawaya MR, Ellenberger T (1999) An open and closed case for all polymerases. Structure 7(2):R31–R35.  https://doi.org/10.1016/S0969-2126(99)80017-3 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Freudenthal BD, Beard WA, Shock DD, Wilson SH (2013) Observing a DNA polymerase choose right from wrong. Cell 154(1):157–168.  https://doi.org/10.1016/j.cell.2013.05.048 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gao Y, Yang W (2016) Capture of a third Mg2+ is essential for catalyzing DNA synthesis. Science 352(6291):1334–1337.  https://doi.org/10.1126/science.aad9633 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nakamura T, Zhao Y, Yamagata Y, Hua YJ, Yang W (2012) Watching DNA polymerase eta make a phosphodiester bond. Nature 487(7406):196–201.  https://doi.org/10.1038/nature11181 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jamsen JA, Beard WA, Pedersen LC, Shock DD, Moon AF, Krahn JM, Bebenek K, Kunkel TA, Wilson SH (2017) Time-lapse crystallography snapshots of a double-strand break repair polymerase in action. Nat Commun 8(1):253.  https://doi.org/10.1038/s41467-017-00271-7 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fragkos M, Ganier O, Coulombe P, Mechali M (2015) DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 16(6):360–374.  https://doi.org/10.1038/nrm4002 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705.  https://doi.org/10.1146/annurev-physiol-030212-183653 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Muzi-Falconi M, Giannattasio M, Foiani M, Plevani P (2003) The DNA polymerase alpha-primase complex: multiple functions and interactions. Sci World J 3:21–33.  https://doi.org/10.1100/tsw.2003.05 CrossRefGoogle Scholar
  24. 24.
    Kunkel TA, Erie DA (2015) Eukaryotic mismatch repair in relation to DNA replication. Annu Rev Genet 49:291–313.  https://doi.org/10.1146/annurev-genet-112414-054722 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gan GN, Wittschieben JP, Wittschieben BO, Wood RD (2008) DNA polymerase zeta (pol [zeta]) in higher eukaryotes. Cell Res 18(1):174–183PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Johansson E, Dixon N (2013) Replicative DNA polymerases. Cold Spring Harb Perspect Biol 5(6):a012799.  https://doi.org/10.1101/cshperspect.a012799 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Morrison A, Bell JB, Kunkel TA, Sugino A (1991) Eukaryotic DNA polymerase amino acid sequence required for 3′—5′ exonuclease activity. Proc Natl Acad Sci USA 88(21):9473–9477PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kunkel TA (2009) Evolving views of DNA replication (In) fidelity. Cold Spring Harb Symp Quant Biol 74:91–101.  https://doi.org/10.1101/sqb.2009.74.027 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79(7):1233–1243PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Maga G, Frouin I, Spadari S, Hubscher U (2001) Replication protein A as a “fidelity clamp” for DNA polymerase alpha. J Biol Chem 276(21):18235–18242.  https://doi.org/10.1074/jbc.M009599200 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Foiani M, Lucchini G, Plevani P (1997) The DNA polymerase alpha-primase complex couples DNA replication, cell-cycle progression and DNA-damage response. Trends Biochem Sci 22(11):424–427PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Yoneda M, Bollum FJ (1965) Deoxynucleotide-polymerizing enzymes of calf thymus gland. I. large scale purification of terminal and replicative deoxynucleotidyl transferases. J Biol Chem 240:3385–3391PubMedPubMedCentralGoogle Scholar
  33. 33.
    Barnes R, Eckert K (2017) Maintenance of genome integrity: how mammalian cells orchestrate genome duplication by coordinating replicative and specialized DNA polymerases. Genes 8(1):19.  https://doi.org/10.3390/genes8010019 CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Schneider A, Smith RW, Kautz AR, Weisshart K, Grosse F, Nasheuer HP (1998) Primase activity of human DNA polymerase alpha-primase. Divalent cations stabilize the enzyme activity of the p48 subunit. J Biol Chem 273(34):21608–21615PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Starokadomskyy P, Gemelli T, Rios JJ, Xing C, Wang RC, Li H, Pokatayev V, Dozmorov I, Khan S, Miyata N, Fraile G, Raj P, Xu Z, Xu Z, Ma L, Lin Z, Wang H, Yang Y, Ben-Amitai D, Orenstein N, Mussaffi H, Baselga E, Tadini G, Grunebaum E, Sarajlija A, Krzewski K, Wakeland EK, Yan N, de la Morena MT, Zinn AR, Burstein E (2016) DNA polymerase-alpha regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol 17(5):495–504.  https://doi.org/10.1038/ni.3409 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Johnson LM, Snyder M, Chang LM, Davis RW, Campbell JL (1985) Isolation of the gene encoding yeast DNA polymerase I. Cell 43(1):369–377PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Copeland WC, Wang TS (1993) Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication. J Biol Chem 268(35):26179–26189PubMedPubMedCentralGoogle Scholar
  38. 38.
    Nick McElhinny SA, Kissling GE, Kunkel TA (2010) Differential correction of lagging-strand replication errors made by DNA polymerases alpha and {delta}. Proc Natl Acad Sci USA 107(49):21070–21075.  https://doi.org/10.1073/pnas.1013048107 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pavlov YI, Frahm C, Nick McElhinny SA, Niimi A, Suzuki M, Kunkel TA (2006) Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 16(2):202–207.  https://doi.org/10.1016/j.cub.2005.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Perera RL, Torella R, Klinge S, Kilkenny ML, Maman JD, Pellegrini L (2013) Mechanism for priming DNA synthesis by yeast DNA polymerase alpha. Elife 2:e00482.  https://doi.org/10.7554/eLife.00482 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Coloma J, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2016) Human DNA polymerase alpha in binary complex with a DNA:DNA template-primer. Sci Rep 6:23784.  https://doi.org/10.1038/srep23784 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Baranovskiy AG, Babayeva ND, Suwa Y, Gu J, Pavlov YI, Tahirov TH (2014) Structural basis for inhibition of DNA replication by aphidicolin. Nucleic Acids Res 42(22):14013–14021.  https://doi.org/10.1093/nar/gku1209 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Baranovskiy AG, Babayeva ND, Zhang Y, Gu J, Suwa Y, Pavlov YI, Tahirov TH (2016) Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome. J Biol Chem 291(19):10006–10020.  https://doi.org/10.1074/jbc.M116.717405 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vaithiyalingam S, Warren EM, Eichman BF, Chazin WJ (2010) Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase. Proc Natl Acad Sci USA 107(31):13684–13689.  https://doi.org/10.1073/pnas.1002009107 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    O’Brien E, Holt ME, Thompson MK, Salay LE, Ehlinger AC, Chazin WJ, Barton JK (2017) The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport. Science 355(6327):1789CrossRefGoogle Scholar
  46. 46.
    Longley MJ, Pierce AJ, Modrich P (1997) DNA polymerase delta is required for human mismatch repair in vitro. J Biol Chem 272(16):10917–10921PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kadyrov FA, Genschel J, Fang Y, Penland E, Edelmann W, Modrich P (2009) A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair. Proc Natl Acad Sci USA 106(21):8495–8500.  https://doi.org/10.1073/pnas.0903654106 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30(2):137–144.  https://doi.org/10.1016/j.molcel.2008.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zeng XR, Hao H, Jiang Y, Lee MY (1994) Regulation of human DNA polymerase delta during the cell cycle. J Biol Chem 269(39):24027–24033PubMedPubMedCentralGoogle Scholar
  50. 50.
    MacNeill SA, Baldacci G, Burgers PM, Hubscher U (2001) A unified nomenclature for the subunits of eukaryotic DNA polymerase delta. Trends Biochem Sci 26(1):16–17PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Chea J, Zhang S, Zhao H, Zhang Z, Lee EY, Darzynkiewicz Z, Lee MY (2012) Spatiotemporal recruitment of human DNA polymerase delta to sites of UV damage. Cell Cycle 11(15):2885–2895.  https://doi.org/10.4161/cc.21280 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Liu L, Rodriguez-Belmonte EM, Mazloum N, Xie B, Lee MY (2003) Identification of a novel protein, PDIP38, that interacts with the p50 subunit of DNA polymerase delta and proliferating cell nuclear antigen. J Biol Chem 278(12):10041–10047.  https://doi.org/10.1074/jbc.M208694200 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ducoux M, Urbach S, Baldacci G, Hubscher U, Koundrioukoff S, Christensen J, Hughes P (2001) Mediation of proliferating cell nuclear antigen (PCNA)-dependent DNA replication through a conserved p21(Cip1)-like PCNA-binding motif present in the third subunit of human DNA polymerase delta. J Biol Chem 276(52):49258–49266.  https://doi.org/10.1074/jbc.M106990200 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Corrette-Bennett SE, Borgeson C, Sommer D, Burgers PM, Lahue RS (2004) DNA polymerase delta, RFC and PCNA are required for repair synthesis of large looped heteroduplexes in Saccharomyces cerevisiae. Nucleic Acids Res 32(21):6268–6275.  https://doi.org/10.1093/nar/gkh965 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Byrnes JJ, Downey KM, Black VL, So AG (1976) A new mammalian DNA polymerase with 3′–5′ exonuclease activity: DNA polymerase delta. Biochemistry 15(13):2817–2823PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Johnson RE, Klassen R, Prakash L, Prakash S (2015) A major role of DNA polymerase delta in replication of both the leading and lagging DNA strands. Mol Cell 59(2):163–175.  https://doi.org/10.1016/j.molcel.2015.05.038 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Burgers PMJ, Gordenin D, Kunkel TA (2016) Who is leading the replication fork, pol epsilon or pol delta? Mol Cell 61(4):492–493.  https://doi.org/10.1016/j.molcel.2016.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18(11):521–527.  https://doi.org/10.1016/j.tcb.2008.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Burgers PM (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284(7):4041–4045.  https://doi.org/10.1074/jbc.R800062200 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lujan SA, Williams JS, Kunkel TA (2016) DNA polymerases divide the labor of genome replication. Trends Cell Biol 26(9):640–654.  https://doi.org/10.1016/j.tcb.2016.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Burgers PMJ, Kunkel TA (2017) Eukaryotic DNA replication fork. Annu Rev Biochem 86:417–438.  https://doi.org/10.1146/annurev-biochem-061516-044709 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3(5):679–685PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Prindle MJ, Loeb LA (2012) DNA polymerase delta in DNA replication and genome maintenance. Environ Mol Mutagen 53(9):666–682.  https://doi.org/10.1002/em.21745 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Schmitt MW, Matsumoto Y, Loeb LA (2009) High fidelity and lesion bypass capability of human DNA polymerase delta. Biochimie 91(9):1163–1172.  https://doi.org/10.1016/j.biochi.2009.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Fortune JM, Pavlov YI, Welch CM, Johansson E, Burgers PM, Kunkel TA (2005) Saccharomyces cerevisiae DNA polymerase delta: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. J Biol Chem 280(33):29980–29987.  https://doi.org/10.1074/jbc.M505236200 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kool ET (2002) Active site tightness and substrate fit in DNA replication. Annu Rev Biochem 71:191–219.  https://doi.org/10.1146/annurev.biochem.71.110601.135453 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta. Nat Struct Mol Biol 16(9):979–986.  https://doi.org/10.1038/nsmb.1663 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Prindle MJ, Schmitt MW, Parmeggiani F, Loeb LA (2013) A substitution in the fingers domain of DNA polymerase delta reduces fidelity by altering nucleotide discrimination in the catalytic site. J Biol Chem 288(8):5572–5580.  https://doi.org/10.1074/jbc.M112.436410 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Franklin MC, Wang J, Steitz TA (2001) Structure of the replicating complex of a pol alpha family DNA polymerase. Cell 105(5):657–667PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Johnson SJ, Beese LS (2004) Structures of mismatch replication errors observed in a DNA polymerase. Cell 116(6):803–816PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Crute JJ, Wahl AF, Bambara RA (1986) Purification and characterization of two new high molecular weight forms of DNA polymerase delta. Biochemistry 25(1):26–36PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Syvaoja JE (1990) DNA polymerase epsilon: the latest member in the family of mammalian DNA polymerases. BioEssays 12(11):533–536.  https://doi.org/10.1002/bies.950121106 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Stillman B (2015) Reconsidering DNA polymerases at the replication fork in eukaryotes. Mol Cell 59(2):139–141.  https://doi.org/10.1016/j.molcel.2015.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Nick McElhinny SA, Kumar D, Clark AB, Watt DL, Watts BE, Lundstrom EB, Johansson E, Chabes A, Kunkel TA (2010) Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6(10):774–781.  https://doi.org/10.1038/nchembio.424 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Miyabe I, Kunkel TA, Carr AM (2011) The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet 7(12):e1002407.  https://doi.org/10.1371/journal.pgen.1002407 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Shcherbakova PV, Pavlov YI, Chilkova O, Rogozin IB, Johansson E, Kunkel TA (2003) Unique error signature of the four-subunit yeast DNA polymerase epsilon. J Biol Chem 278(44):43770–43780.  https://doi.org/10.1074/jbc.M306893200 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Shimizu K, Hashimoto K, Kirchner JM, Nakai W, Nishikawa H, Resnick MA, Sugino A (2002) Fidelity of DNA polymerase epsilon holoenzyme from budding yeast Saccharomyces cerevisiae. J Biol Chem 277(40):37422–37429.  https://doi.org/10.1074/jbc.M204476200 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Navas TA, Zhou Z, Elledge SJ (1995) DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80(1):29–39PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Pursell ZF, Kunkel TA (2008) DNA polymerase ε: a polymerase of unusual size (and complexity). Prog Nucleic Acid Res Mol Biol 82:101–145.  https://doi.org/10.1016/S0079-6603(08)00004-4 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Asturias FJ, Cheung IK, Sabouri N, Chilkova O, Wepplo D, Johansson E (2006) Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy. Nat Struct Mol Biol 13(1):35–43.  https://doi.org/10.1038/nsmb1040 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Baranovskiy AG, Gu J, Babayeva ND, Kurinov I, Pavlov YI, Tahirov TH (2017) Crystal structure of the human Polϵ B-subunit in complex with the C-terminal domain of the catalytic subunit. J Biol Chem 292(38):15717–15730.  https://doi.org/10.1074/jbc.m117.792705 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Li Y, Pursell ZF, Linn S (2000) Identification and cloning of two histone fold motif-containing subunits of HeLa DNA polymerase epsilon. J Biol Chem 275(30):23247–23252.  https://doi.org/10.1074/jbc.M002548200 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hogg M, Osterman P, Bylund GO, Ganai RA, Lundstrom EB, Sauer-Eriksson AE, Johansson E (2014) Structural basis for processive DNA synthesis by yeast DNA polymerase varepsilon. Nat Struct Mol Biol 21(1):49–55.  https://doi.org/10.1038/nsmb.2712 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Jain R, Rajashankar KR, Buku A, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2014) Crystal structure of yeast DNA polymerase epsilon catalytic domain. PLoS One 9(4):e94835.  https://doi.org/10.1371/journal.pone.0094835 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Doublié S, Zahn KE (2014) Structural insights into eukaryotic DNA replication. Front Microbiol 5:444.  https://doi.org/10.3389/fmicb.2014.00444 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Schaich MA, Smith MR, Cloud AS, Holloran SM, Freudenthal BD (2017) Structures of a DNA polymerase inserting therapeutic nucleotide analogues. Chem Res Toxicol 30(11):1993–2001.  https://doi.org/10.1021/acs.chemrestox.7b00173 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Lemontt JF (1971) Mutants of yeast defective in mutation induced by ultraviolet light. Genetics 68(1):21–33PubMedPubMedCentralGoogle Scholar
  88. 88.
    Prakash L (1976) Effect of genes controlling radiation sensitivity on chemically induced mutations in Saccharomyces cerevisiae. Genetics 83(2):285–301PubMedPubMedCentralGoogle Scholar
  89. 89.
    McKee RH, Lawrence CW (1979) Genetic analysis of gamma-ray mutagenesis in yeast. I. Reversion in radiation-sensitive strains. Genetics 93(2):361–373PubMedPubMedCentralGoogle Scholar
  90. 90.
    Lawrence CW, Das G, Christensen RB (1985) REV7, a new gene concerned with UV mutagenesis in yeast. Mol Gen Genet 200(1):80–85PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Morrison A, Araki H, Clark AB, Hamatake RK, Sugino A (1990) A third essential DNA polymerase in S. cerevisiae. Cell 62(6):1143–1151PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Nelson JR, Lawrence CW, Hinkle DC (1996) Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272(5268):1646–1649PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Zhong X, Garg P, Stith CM, Nick McElhinny SA, Kissling GE, Burgers PM, Kunkel TA (2006) The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins. Nucleic Acids Res 34(17):4731–4742.  https://doi.org/10.1093/nar/gkl465 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Vaisman A, Woodgate R (2017) Translesion DNA polymerases in eukaryotes: what makes them tick? Crit Rev Biochem Mol Biol 52(3):274–303.  https://doi.org/10.1080/10409238.2017.1291576 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Hara K, Hashimoto H, Murakumo Y, Kobayashi S, Kogame T, Unzai S, Akashi S, Takeda S, Shimizu T, Sato M (2010) Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase zeta and REV1. J Biol Chem 285(16):12299–12307.  https://doi.org/10.1074/jbc.M109.092403 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Kikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H (2012) Structural basis of recruitment of DNA polymerase zeta by interaction between REV1 and REV7 proteins. J Biol Chem 287(40):33847–33852.  https://doi.org/10.1074/jbc.M112.396838 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Brandao LN, Ferguson R, Santoro I, Jinks-Robertson S, Sclafani RA (2014) The role of Dbf4-dependent protein kinase in DNA polymerase zeta-dependent mutagenesis in Saccharomyces cerevisiae. Genetics 197(4):1111–1122.  https://doi.org/10.1534/genetics.114.165308 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Fattah FJ, Hara K, Fattah KR, Yang C, Wu N, Warrington R, Chen DJ, Zhou P, Boothman DA, Yu H (2014) The transcription factor TFII-I promotes DNA translesion synthesis and genomic stability. PLoS Genet 10(6):e1004419.  https://doi.org/10.1371/journal.pgen.1004419 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, Fishel R (2000) A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem 275(6):4391–4397PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Makarova AV, Stodola JL, Burgers PM (2012) A four-subunit DNA polymerase zeta complex containing Pol delta accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res 40(22):11618–11626.  https://doi.org/10.1093/nar/gks948 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Lee YS, Gregory MT, Yang W (2014) Human Pol zeta purified with accessory subunits is active in translesion DNA synthesis and complements Pol eta in cisplatin bypass. Proc Natl Acad Sci USA 111(8):2954–2959.  https://doi.org/10.1073/pnas.1324001111 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Gomez-Llorente Y, Malik R, Jain R, Choudhury JR, Johnson RE, Prakash L, Prakash S, Ubarretxena-Belandia I, Aggarwal AK (2013) The architecture of yeast DNA polymerase zeta. Cell Rep 5(1):79–86.  https://doi.org/10.1016/j.celrep.2013.08.046 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Jain R, Hammel M, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structural insights into yeast DNA polymerase delta by small angle X-ray scattering. J Mol Biol 394(3):377–382.  https://doi.org/10.1016/j.jmb.2009.09.066 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Nunez-Ramirez R, Klinge S, Sauguet L, Melero R, Recuero-Checa MA, Kilkenny M, Perera RL, Garcia-Alvarez B, Hall RJ, Nogales E, Pellegrini L, Llorca O (2011) Flexible tethering of primase and DNA Pol alpha in the eukaryotic primosome. Nucleic Acids Res 39(18):8187–8199.  https://doi.org/10.1093/nar/gkr534 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L (2000) Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature 406(6799):1015–1019.  https://doi.org/10.1038/35023030 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Haracska L, Prakash S, Prakash L (2003) Yeast DNA polymerase zeta is an efficient extender of primer ends opposite from 7,8-dihydro-8-Oxoguanine and O6-methylguanine. Mol Cell Biol 23(4):1453–1459PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Northam MR, Robinson HA, Kochenova OV, Shcherbakova PV (2010) Participation of DNA polymerase zeta in replication of undamaged DNA in Saccharomyces cerevisiae. Genetics 184(1):27–42.  https://doi.org/10.1534/genetics.109.107482 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Lemontt JF (1972) Induction of forward mutations in mutationally defective yeast. Mol Gen Genet 119(1):27–42PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Quah SK, von Borstel RC, Hastings PJ (1980) The origin of spontaneous mutation in Saccharomyces cerevisiae. Genetics 96(4):819–839PubMedPubMedCentralGoogle Scholar
  110. 110.
    Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z, Woodgate R (2001) The Y-family of DNA polymerases. Mol Cell 8(1):7–8PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Ling H, Boudsocq F, Woodgate R, Yang W (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107(1):91–102PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Silvian LF, Toth EA, Pham P, Goodman MF, Ellenberger T (2001) Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat Struct Biol 8(11):984–989.  https://doi.org/10.1038/nsb1101-984 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Trincao J, Johnson RE, Escalante CR, Prakash S, Prakash L, Aggarwal AK (2001) Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis. Mol Cell 8(2):417–426PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    McCulloch SD, Kunkel TA (2008) The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18(1):148–161.  https://doi.org/10.1038/cr.2008.4 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Kulaeva OI, Koonin EV, McDonald JP, Randall SK, Rabinovich N, Connaughton JF, Levine AS, Woodgate R (1996) Identification of a DinB/UmuC homolog in the archeon Sulfolobus solfataricus. Mutat Res 357(1–2):245–253PubMedCrossRefGoogle Scholar
  116. 116.
    McDonald JP, Levine AS, Woodgate R (1997) The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics 147(4):1557–1568PubMedPubMedCentralGoogle Scholar
  117. 117.
    Johnson RE, Prakash S, Prakash L (1999) Requirement of DNA polymerase activity of yeast Rad30 protein for its biological function. J Biol Chem 274(23):15975–15977PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Haracska L, Yu SL, Johnson RE, Prakash L, Prakash S (2000) Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Nat Genet 25(4):458–461.  https://doi.org/10.1038/78169 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Johnson RE, Kondratick CM, Prakash S, Prakash L (1999) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285(5425):263–265PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399(6737):700–704.  https://doi.org/10.1038/21447 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Silverstein TD, Johnson RE, Jain R, Prakash L, Prakash S, Aggarwal AK (2010) Structural basis for the suppression of skin cancers by DNA polymerase eta. Nature 465(7301):1039–1043.  https://doi.org/10.1038/nature09104 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Biertumpfel C, Zhao Y, Kondo Y, Ramon-Maiques S, Gregory M, Lee JY, Masutani C, Lehmann AR, Hanaoka F, Yang W (2010) Structure and mechanism of human DNA polymerase eta. Nature 465(7301):1044–1048.  https://doi.org/10.1038/nature09196 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Washington MT, Helquist SA, Kool ET, Prakash L, Prakash S (2003) Requirement of Watson-Crick hydrogen bonding for DNA synthesis by yeast DNA polymerase eta. Mol Cell Biol 23(14):5107–5112PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Yu SL, Johnson RE, Prakash S, Prakash L (2001) Requirement of DNA polymerase eta for error-free bypass of UV-induced CC and TC photoproducts. Mol Cell Biol 21(1):185–188.  https://doi.org/10.1128/MCB.21.1.185-188.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Haracska L, Washington MT, Prakash S, Prakash L (2001) Inefficient bypass of an abasic site by DNA polymerase eta. J Biol Chem 276(9):6861–6866.  https://doi.org/10.1074/jbc.M008021200 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Zhao Y, Gregory MT, Biertumpfel C, Hua YJ, Hanaoka F, Yang W (2013) Mechanism of somatic hypermutation at the WA motif by human DNA polymerase eta. Proc Natl Acad Sci USA 110(20):8146–8151.  https://doi.org/10.1073/pnas.1303126110 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Saribasak H, Rajagopal D, Maul RW, Gearhart PJ (2009) Hijacked DNA repair proteins and unchained DNA polymerases. Philos Trans R Soc Lond B Biol Sci 364(1517):605–611.  https://doi.org/10.1098/rstb.2008.0188 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Kawamoto T, Araki K, Sonoda E, Yamashita YM, Harada K, Kikuchi K, Masutani C, Hanaoka F, Nozaki K, Hashimoto N, Takeda S (2005) Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol Cell 20(5):793–799.  https://doi.org/10.1016/j.molcel.2005.10.016 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    McIlwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC (2005) Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20(5):783–792.  https://doi.org/10.1016/j.molcel.2005.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Tissier A, McDonald JP, Frank EG, Woodgate R (2000) poliota, a remarkably error-prone human DNA polymerase. Genes Dev 14(13):1642–1650PubMedPubMedCentralGoogle Scholar
  131. 131.
    Vaisman A, Frank EG, McDonald JP, Tissier A, Woodgate R (2002) poliota-dependent lesion bypass in vitro. Mutat Res 510(1–2):9–22PubMedCrossRefGoogle Scholar
  132. 132.
    Ishikawa T, Uematsu N, Mizukoshi T, Iwai S, Iwasaki H, Masutani C, Hanaoka F, Ueda R, Ohmori H, Todo T (2001) Mutagenic and nonmutagenic bypass of DNA lesions by Drosophila DNA polymerases dpoleta and dpoliota. J Biol Chem 276(18):15155–15163.  https://doi.org/10.1074/jbc.M009822200 CrossRefPubMedGoogle Scholar
  133. 133.
    Washington MT, Johnson RE, Prakash L, Prakash S (2004) Human DNA polymerase iota utilizes different nucleotide incorporation mechanisms dependent upon the template base. Mol Cell Biol 24(2):936–943PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Zhang Y, Yuan F, Wu X, Wang Z (2000) Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase iota. Mol Cell Biol 20(19):7099–7108PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2006) An incoming nucleotide imposes an anti to syn conformational change on the templating purine in the human DNA polymerase-iota active site. Structure 14(4):749–755.  https://doi.org/10.1016/j.str.2006.01.010 CrossRefPubMedGoogle Scholar
  136. 136.
    Nair DT, Johnson RE, Prakash S, Prakash L, Aggarwal AK (2004) Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nature 430(6997):377–380.  https://doi.org/10.1038/nature02692 CrossRefPubMedGoogle Scholar
  137. 137.
    Makarova AV, Kulbachinskiy AV (2012) Structure of human DNA polymerase iota and the mechanism of DNA synthesis. Biochemistry (Mosc) 77(6):547–561.  https://doi.org/10.1134/S0006297912060016 CrossRefGoogle Scholar
  138. 138.
    Washington MT, Carlson KD, Freudenthal BD, Pryor JM (2010) Variations on a theme: eukaryotic Y-family DNA polymerases. Biochim Biophys Acta 1804:1113–1123.  https://doi.org/10.1016/j.bbapap.2009.07.004 CrossRefPubMedGoogle Scholar
  139. 139.
    Frank EG, Sayer JM, Kroth H, Ohashi E, Ohmori H, Jerina DM, Woodgate R (2002) Translesion replication of benzo[a]pyrene and benzo[c]phenanthrene diol epoxide adducts of deoxyadenosine and deoxyguanosine by human DNA polymerase iota. Nucleic Acids Res 30(23):5284–5292PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Pence MG, Choi JY, Egli M, Guengerich FP (2010) Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota. J Biol Chem 285(52):40666–40672.  https://doi.org/10.1074/jbc.M110.183665 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2006) Hoogsteen base pair formation promotes synthesis opposite the 1, N6-ethenodeoxyadenosine lesion by human DNA polymerase iota. Nat Struct Mol Biol 13(7):619–625.  https://doi.org/10.1038/nsmb1118 CrossRefPubMedGoogle Scholar
  142. 142.
    Donny-Clark K, Shapiro R, Broyde S (2009) Accommodation of an N-(deoxyguanosin-8-yl)-2-acetylaminofluorene adduct in the active site of human DNA polymerase iota: hoogsteen or Watson–Crick base pairing? Biochemistry 48(1):7–18.  https://doi.org/10.1021/bi801283d CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Donny-Clark K, Broyde S (2009) Influence of local sequence context on damaged base conformation in human DNA polymerase iota: molecular dynamics studies of nucleotide incorporation opposite a benzo[a]pyrene-derived adenine lesion. Nucleic Acids Res 37(21):7095–7109.  https://doi.org/10.1093/nar/gkp745 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Gerlach VL, Aravind L, Gotway G, Schultz RA, Koonin EV, Friedberg EC (1999) Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc Natl Acad Sci USA 96(21):11922–11927PubMedCrossRefGoogle Scholar
  145. 145.
    Ohashi E, Ogi T, Kusumoto R, Iwai S, Masutani C, Hanaoka F, Ohmori H (2000) Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa. Genes Dev 14(13):1589–1594PubMedPubMedCentralGoogle Scholar
  146. 146.
    Johnson RE, Prakash S, Prakash L (2000) The human DINB1 gene encodes the DNA polymerase Poltheta. Proc Natl Acad Sci USA 97(8):3838–3843PubMedCrossRefGoogle Scholar
  147. 147.
    Washington MT, Johnson RE, Prakash L, Prakash S (2002) Human DINB1-encoded DNA polymerase kappa is a promiscuous extender of mispaired primer termini. Proc Natl Acad Sci USA 99(4):1910–1914.  https://doi.org/10.1073/pnas.032594399 CrossRefPubMedGoogle Scholar
  148. 148.
    Haracska L, Prakash L, Prakash S (2002) Role of human DNA polymerase kappa as an extender in translesion synthesis. Proc Natl Acad Sci U S A 99(25):16000–16005.  https://doi.org/10.1073/pnas.252524999 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Zhang Y, Wu X, Guo D, Rechkoblit O, Wang Z (2002) Activities of human DNA polymerase kappa in response to the major benzo[a]pyrene DNA adduct: error-free lesion bypass and extension synthesis from opposite the lesion. DNA Repair 1(7):559–569PubMedCrossRefGoogle Scholar
  150. 150.
    Washington MT, Minko IG, Johnson RE, Wolfle WT, Harris TM, Lloyd RS, Prakash S, Prakash L (2004) Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases iota and kappa. Mol Cell Biol 24(13):5687–5693.  https://doi.org/10.1128/MCB.24.13.5687-5693.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Wolfle WT, Johnson RE, Minko IG, Lloyd RS, Prakash S, Prakash L (2006) Replication past a trans-4-hydroxynonenal minor-groove adduct by the sequential action of human DNA polymerases iota and kappa. Mol Cell Biol 26(1):381–386.  https://doi.org/10.1128/MCB.26.1.381-386.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Tonzi P, Yin Y, Lee CWT, Rothenberg E, Huang TT (2018) Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery. Elife.  https://doi.org/10.7554/eLife.41426 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Uljon SN, Johnson RE, Edwards TA, Prakash S, Prakash L, Aggarwal AK (2004) Crystal structure of the catalytic core of human DNA polymerase kappa. Structure 12(8):1395–1404.  https://doi.org/10.1016/j.str.2004.05.011 CrossRefPubMedGoogle Scholar
  154. 154.
    Lone S, Townson SA, Uljon SN, Johnson RE, Brahma A, Nair DT, Prakash S, Prakash L, Aggarwal AK (2007) Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass. Mol Cell 25(4):601–614.  https://doi.org/10.1016/j.molcel.2007.01.018 CrossRefPubMedGoogle Scholar
  155. 155.
    Zhang Y, Yuan F, Xin H, Wu X, Rajpal DK, Yang D, Wang Z (2000) Human DNA polymerase kappa synthesizes DNA with extraordinarily low fidelity. Nucleic Acids Res 28(21):4147–4156PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Liu Y, Yang Y, Tang TS, Zhang H, Wang Z, Friedberg E, Yang W, Guo C (2014) Variants of mouse DNA polymerase kappa reveal a mechanism of efficient and accurate translesion synthesis past a benzo[a]pyrene dG adduct. Proc Natl Acad Sci USA 111(5):1789–1794.  https://doi.org/10.1073/pnas.1324168111 CrossRefPubMedGoogle Scholar
  157. 157.
    Jha V, Bian C, Xing G, Ling H (2016) Structure and mechanism of error-free replication past the major benzo[a]pyrene adduct by human DNA polymerase kappa. Nucleic Acids Res 44(10):4957–4967.  https://doi.org/10.1093/nar/gkw204 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Jha V, Ling H (2018) 2.0 A resolution crystal structure of human polkappa reveals a new catalytic function of N-clasp in DNA replication. Sci Rep 8(1):15125.  https://doi.org/10.1038/s41598-018-33371-5 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Nelson JR, Lawrence CW, Hinkle DC (1996) Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382(6593):729–731.  https://doi.org/10.1038/382729a0 CrossRefPubMedGoogle Scholar
  160. 160.
    Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2005) Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309(5744):2219–2222.  https://doi.org/10.1126/science.1116336 CrossRefPubMedGoogle Scholar
  161. 161.
    Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structure of the human Rev1-DNA-dNTP ternary complex. J Mol Biol 390(4):699–709.  https://doi.org/10.1016/j.jmb.2009.05.026 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Rechkoblit O, Kolbanovskiy A, Landes H, Geacintov NE, Aggarwal AK (2017) Mechanism of error-free replication across benzo[a]pyrene stereoisomers by Rev1 DNA polymerase. Nat Commun 8(1):965.  https://doi.org/10.1038/s41467-017-01013-5 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2011) DNA synthesis across an abasic lesion by yeast REV1 DNA polymerase. J Mol Biol 406(1):18–28.  https://doi.org/10.1016/j.jmb.2010.12.016 CrossRefPubMedGoogle Scholar
  164. 164.
    Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2008) Protein-template-directed synthesis across an acrolein-derived DNA adduct by yeast Rev1 DNA polymerase. Structure 16(2):239–245.  https://doi.org/10.1016/j.str.2007.12.009 CrossRefPubMedGoogle Scholar
  165. 165.
    Pustovalova Y, Magalhaes MT, D’Souza S, Rizzo AA, Korza G, Walker GC, Korzhnev DM (2016) Interaction between the Rev1 C-terminal domain and the PolD3 subunit of polzeta suggests a mechanism of polymerase exchange upon Rev1/Polzeta-dependent translesion synthesis. Biochemistry 55(13):2043–2053.  https://doi.org/10.1021/acs.biochem.5b01282 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Wojtaszek J, Lee CJ, D’Souza S, Minesinger B, Kim H, D’Andrea AD, Walker GC, Zhou P (2012) Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) zeta, and Pol kappa. J Biol Chem 287(40):33836–33846.  https://doi.org/10.1074/jbc.M112.394841 CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Wang Z, Castaño IB, Adams C, Vu C, Fitzhugh D, Christman MF (2002) Structure/function analysis of the Saccharomyces cerevisiae Trf4/Pol sigma DNA polymerase. Genetics 160(2):381–391PubMedPubMedCentralGoogle Scholar
  168. 168.
    Wang Z, Castano IB, De Las Penas A, Adams C, Christman MF (2000) Pol kappa: a DNA polymerase required for sister chromatid cohesion. Science 289(5480):774–779PubMedCrossRefGoogle Scholar
  169. 169.
    Motea EA (1804) Berdis AJ (2010) terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochim Biophys Acta 5:1151–1166.  https://doi.org/10.1016/j.bbapap.2009.06.030 CrossRefGoogle Scholar
  170. 170.
    Chang LM, Bollum FJ (1971) Low molecular weight deoxyribonucleic acid polymerase in mammalian cells. J Biol Chem 246(18):5835–5837PubMedGoogle Scholar
  171. 171.
    Bose-Basu B, DeRose EF, Kirby TW, Mueller GA, Beard WA, Wilson SH, London RE (2004) Dynamic characterization of a DNA repair enzyme: NMR studies of [methyl-13C]methionine-labeled DNA polymerase beta. Biochemistry 43(28):8911–8922.  https://doi.org/10.1021/bi049641n CrossRefPubMedGoogle Scholar
  172. 172.
    Freudenthal BD, Beard WA, Wilson SH (2012) Structures of dNTP intermediate states during DNA polymerase active site assembly. Structure 20(11):1829–1837.  https://doi.org/10.1016/j.str.2012.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Werneburg BG, Ahn J, Zhong X, Hondal RJ, Kraynov VS, Tsai MD (1996) DNA polymerase beta: pre-steady-state kinetic analysis and roles of arginine-283 in catalysis and fidelity. Biochemistry 35(22):7041–7050.  https://doi.org/10.1021/bi9527202 CrossRefPubMedGoogle Scholar
  174. 174.
    Podlutsky AJ, Dianova I, Wilson SH, Bohr VA, Dianov GL (2001) DNA synthesis and dRPase activities of polymerase beta are both essential for single-nucleotide patch base excision repair in mammalian cell extracts. Biochemistry 40(3):809–813PubMedCrossRefGoogle Scholar
  175. 175.
    Kaufman BA, Van Houten B (2017) POLB: a new role of DNA polymerase beta in mitochondrial base excision repair. DNA Repair 60:A1–a5.  https://doi.org/10.1016/j.dnarep.2017.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Prasad R, Caglayan M, Dai DP, Nadalutti CA, Zhao ML, Gassman NR, Janoshazi AK, Stefanick DF, Horton JK, Krasich R, Longley MJ, Copeland WC, Griffith JD, Wilson SH (2017) DNA polymerase beta: a missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair (Amst) 60:77–88.  https://doi.org/10.1016/j.dnarep.2017.10.011 CrossRefGoogle Scholar
  177. 177.
    Ray S, Breuer G, DeVeaux M, Zelterman D, Bindra R, Sweasy JB (2017) DNA polymerase beta participates in DNA End-joining. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkx1147 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Matsumoto Y, Kim K (1995) Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269(5224):699–702PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Prasad R, Beard WA, Strauss PR, Wilson SH (1998) Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J Biol Chem 273(24):15263–15270PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Sobol RW, Prasad R, Evenski A, Baker A, Yang XP, Horton JK, Wilson SH (2000) The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity. Nature 405(6788):807–810.  https://doi.org/10.1038/35015598 CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Whitaker AM, Smith MR, Schaich MA, Freudenthal BD (2017) Capturing a mammalian DNA polymerase extending from an oxidized nucleotide. Nucleic Acids Res 45(11):6934–6944.  https://doi.org/10.1093/nar/gkx293 CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Lin P, Pedersen LC, Batra VK, Beard WA, Wilson SH, Pedersen LG (2006) Energy analysis of chemistry for correct insertion by DNA polymerase beta. Proc Natl Acad Sci USA 103(36):13294–13299.  https://doi.org/10.1073/pnas.0606006103 CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Batra VK, Perera L, Lin P, Shock DD, Beard WA, Pedersen LC, Pedersen LG, Wilson SH (2013) Amino acid substitution in the active site of DNA polymerase beta explains the energy barrier of the nucleotidyl transfer reaction. J Am Chem Soc 135(21):8078–8088.  https://doi.org/10.1021/ja403842j CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Davies JF, Almassy RJ, Hostomska Z, Ferre RA, Hostomsky Z (1994) 2.3 a crystal structure of the catalytic domain of DNA polymerase beta. Cell 76(6):1123–1133PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Freudenthal BD, Beard WA, Perera L, Shock DD, Kim T, Schlick T, Wilson SH (2015) Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature 517(7536):635–639.  https://doi.org/10.1038/nature13886 CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Freudenthal BD, Beard WA, Wilson SH (2015) New structural snapshots provide molecular insights into the mechanism of high fidelity DNA synthesis. DNA Repair 32:3–9.  https://doi.org/10.1016/j.dnarep.2015.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Reed AJ, Suo Z (2017) Time-dependent extension from an 8-oxoguanine lesion by human DNA polymerase beta. J Am Chem Soc 139(28):9684–9690.  https://doi.org/10.1021/jacs.7b05048 CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Vyas R, Reed AJ, Tokarsky EJ, Suo Z (2015) Viewing human DNA polymerase beta faithfully and unfaithfully bypass an oxidative lesion by time-dependent crystallography. J Am Chem Soc 137(15):5225–5230.  https://doi.org/10.1021/jacs.5b02109 CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Reed AJ, Vyas R, Raper AT, Suo Z (2017) Structural insights into the post-chemistry steps of nucleotide incorporation catalyzed by a DNA polymerase. J Am Chem Soc 139(1):465–471.  https://doi.org/10.1021/jacs.6b11258 CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Garcia-Diaz M, Dominguez O, Lopez-Fernandez LA, de Lera LT, Saniger ML, Ruiz JF, Parraga M, Garcia-Ortiz MJ, Kirchhoff T, del Mazo J, Bernad A, Blanco L (2000) DNA polymerase lambda (Pol lambda), a novel eukaryotic DNA polymerase with a potential role in meiosis. J Mol Biol 301(4):851–867.  https://doi.org/10.1006/jmbi.2000.4005 CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Maga G, Villani G, Ramadan K, Shevelev I, Tanguy Le Gac N, Blanco L, Blanca G, Spadari S, Hubscher U (2002) Human DNA polymerase lambda functionally and physically interacts with proliferating cell nuclear antigen in normal and translesion DNA synthesis. J Biol Chem 277(50):48434–48440.  https://doi.org/10.1074/jbc.M206889200 CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Braithwaite EK, Kedar PS, Stumpo DJ, Bertocci B, Freedman JH, Samson LD, Wilson SH (2010) DNA polymerases beta and lambda mediate overlapping and independent roles in base excision repair in mouse embryonic fibroblasts. PLoS One 5(8):e12229.  https://doi.org/10.1371/journal.pone.0012229 CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Lee JW, Blanco L, Zhou T, Garcia-Diaz M, Bebenek K, Kunkel TA, Wang Z, Povirk LF (2004) Implication of DNA polymerase lambda in alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts. J Biol Chem 279(1):805–811.  https://doi.org/10.1074/jbc.M307913200 CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Uchiyama Y, Takeuchi R, Kodera H, Sakaguchi K (2009) Distribution and roles of X-family DNA polymerases in eukaryotes. Biochimie 91(2):165–170.  https://doi.org/10.1016/j.biochi.2008.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Garcia-Diaz M, Bebenek K, Kunkel TA, Blanco L (2001) Identification of an intrinsic 5′-deoxyribose-5-phosphate lyase activity in human DNA polymerase lambda: a possible role in base excision repair. J Biol Chem 276(37):34659–34663.  https://doi.org/10.1074/jbc.M106336200 CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Braithwaite EK, Prasad R, Shock DD, Hou EW, Beard WA, Wilson SH (2005) DNA polymerase λ mediates a back-up base excision repair activity in extracts of mouse embryonic fibroblasts. J Biol Chem 280(18):18469–18475.  https://doi.org/10.1074/jbc.M411864200 CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Bebenek K, Pedersen LC, Kunkel TA (2014) Structure-function studies of DNA polymerase λ. Biochemistry 53(17):2781–2792.  https://doi.org/10.1021/bi4017236 CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    van Loon B, Hubscher U, Maga G (2017) Living on the edge: DNA polymerase lambda between genome stability and mutagenesis. Chem Res Toxicol 30(11):1936–1941.  https://doi.org/10.1021/acs.chemrestox.7b00152 CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    DeRose EF, Kirby TW, Mueller GA, Bebenek K, Garcia-Diaz M, Blanco L, Kunkel TA, London RE (2003) Solution structure of the lyase domain of human DNA polymerase lambda. Biochemistry 42(32):9564–9574.  https://doi.org/10.1021/bi034298s CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Wimmer U, Ferrari E, Hunziker P, Hubscher U (2008) Control of DNA polymerase lambda stability by phosphorylation and ubiquitination during the cell cycle. EMBO Rep 9(10):1027–1033.  https://doi.org/10.1038/embor.2008.148 CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Mueller GA, Moon AF, DeRose EF, Havener JM, Ramsden DA, Pedersen LC, London RE (2008) A comparison of BRCT domains involved in nonhomologous end-joining: introducing the solution structure of the BRCT domain of polymerase lambda. DNA Repair 7(8):1340–1351.  https://doi.org/10.1016/j.dnarep.2008.04.018 CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Garcia-Diaz M, Bebenek K, Krahn JM, Blanco L, Kunkel TA, Pedersen LC (2004) A structural solution for the DNA polymerase lambda-dependent repair of DNA gaps with minimal homology. Mol Cell 13(4):561–572PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Bebenek K, Garcia-Diaz M, Zhou R, Povirk LF, Kunkel TA (2010) Loop 1 modulates the fidelity of DNA polymerase λ. Nucleic Acids Res 38(16):5419–5431.  https://doi.org/10.1093/nar/gkq261 CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Garcia-Diaz M, Bebenek K, Larrea AA, Havener JM, Perera L, Krahn JM, Pedersen LC, Ramsden DA, Kunkel TA (2009) Template strand scrunching during DNA gap repair synthesis by human polymerase λ. Nat Struct Mol Biol 16:967.  https://doi.org/10.1038/nsmb.1654 CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Bebenek K, Garcia-Diaz M, Blanco L, Kunkel TA (2003) The frameshift infidelity of human DNA polymerase lambda. Implications for function. J Biol Chem 278(36):34685–34690.  https://doi.org/10.1074/jbc.M305705200 CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Bebenek K, Garcia-Diaz M, Foley MC, Pedersen LC, Schlick T, Kunkel TA (2008) Substrate-induced DNA strand misalignment during catalytic cycling by DNA polymerase lambda. EMBO Rep 9(5):459–464.  https://doi.org/10.1038/embor.2008.33 CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Dominguez O, Ruiz JF, Lain de Lera T, Garcia-Diaz M, Gonzalez MA, Kirchhoff T, Martinez AC, Bernad A, Blanco L (2000) DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J 19(7):1731–1742.  https://doi.org/10.1093/emboj/19.7.1731 CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Nick McElhinny SA, Ramsden DA (2003) Polymerase mu is a DNA-directed DNA/RNA polymerase. Mol Cell Biol 23(7):2309–2315PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Martin MJ, Garcia-Ortiz MV, Esteban V, Blanco L (2013) Ribonucleotides and manganese ions improve non-homologous end joining by human Polmu. Nucleic Acids Res 41(4):2428–2436.  https://doi.org/10.1093/nar/gks1444 CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Moon AF, Garcia-Diaz M, Bebenek K, Davis BJ, Zhong X, Ramsden DA, Kunkel TA, Pedersen LC (2006) Structural insight into the substrate specificity of DNA Polymerase μ. Nat Struct Mol Biol 14:45.  https://doi.org/10.1038/nsmb1180 CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Martin MJ, Juarez R, Blanco L (2012) DNA-binding determinants promoting NHEJ by human Polµ. Nucleic Acids Res 40(22):11389–11403.  https://doi.org/10.1093/nar/gks896 CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Roettger MP, Fiala KA, Sompalli S, Dong Y, Suo Z (2004) Pre-steady-state kinetic studies of the fidelity of human DNA polymerase mu. Biochemistry 43(43):13827–13838.  https://doi.org/10.1021/bi048782m CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Moon AF, Pryor JM, Ramsden DA, Kunkel TA, Bebenek K, Pedersen LC (2017) Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu. Nucleic Acids Res 45(15):9138–9148.  https://doi.org/10.1093/nar/gkx527 CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Moon AF, Pryor JM, Ramsden DA, Kunkel TA, Bebenek K, Pedersen LC (2014) Sustained active site rigidity during synthesis by human DNA polymerase μ. Nat Struct Mol Biol 21:253.  https://doi.org/10.1038/nsmb.2766 CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Juárez R, Ruiz JF, Nick McElhinny SA, Ramsden D, Blanco L (2006) A specific loop in human DNA polymerase mu allows switching between creative and DNA-instructed synthesis. Nucleic Acids Res 34(16):4572–4582.  https://doi.org/10.1093/nar/gkl457 CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Moon AF, Gosavi RA, Kunkel TA, Pedersen LC, Bebenek K (2015) Creative template-dependent synthesis by human polymerase mu. Proc Natl Acad Sci USA 112(33):E4530–E4536.  https://doi.org/10.1073/pnas.1505798112 CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Bollum FJ (1960) Calf thymus polymerase. J Biol Chem 235:2399–2403PubMedPubMedCentralGoogle Scholar
  218. 218.
    Bollum FJ (1964) Chemically defined templates and initiators for deoxypolynucleotide synthesis. Science 144(3618):560.  https://doi.org/10.1126/science.144.3618.560-b CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Desiderio SV, Yancopoulos GD, Paskind M, Thomas E, Boss MA, Landau N, Alt FW, Baltimore D (1984) Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells. Nature 311(5988):752–755PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Bertocci B, De Smet A, Weill JC, Reynaud CA (2006) Nonoverlapping functions of DNA polymerases mu, lambda, and terminal deoxynucleotidyl transferase during immunoglobulin V(D)J recombination in vivo. Immunity 25(1):31–41.  https://doi.org/10.1016/j.immuni.2006.04.013 CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Kunkel TA, Gopinathan KP, Dube DK, Snow ET, Loeb LA (1986) Rearrangements of DNA mediated by terminal transferase. Proc Natl Acad Sci USA 83(6):1867–1871PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Kepler TB, Borrero M, Rugerio B, McCray SK, Clarke SH (1996) Interdependence of N nucleotide addition and recombination site choice in V(D)J rearrangement. J Immunol 157(10):4451–4457PubMedPubMedCentralGoogle Scholar
  223. 223.
    Komori T, Okada A, Stewart V, Alt FW (1993) Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261(5125):1171–1175PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Moon AF, Garcia-Diaz M, Batra VK, Beard WA, Bebenek K, Kunkel TA, Wilson SH, Pedersen LC (2007) The X family portrait: structural insights into biological functions of X family polymerases. DNA Repair 6(12):1709–1725.  https://doi.org/10.1016/j.dnarep.2007.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Delarue M, Boule JB, Lescar J, Expert-Bezancon N, Jourdan N, Sukumar N, Rougeon F, Papanicolaou C (2002) Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. EMBO J 21(3):427–439PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Gouge J, Rosario S, Romain F, Beguin P, Delarue M (2013) Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism. J Mol Biol 425(22):4334–4352.  https://doi.org/10.1016/j.jmb.2013.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Loc’h J, Rosario S, Delarue M (2016) Structural basis for a new templated activity by terminal deoxynucleotidyl transferase: implications for V(D)J recombination. Structure.  https://doi.org/10.1016/j.str.2016.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Gouge J, Rosario S, Romain F, Poitevin F, Beguin P, Delarue M (2015) Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair. EMBO J 34(8):1126–1142.  https://doi.org/10.15252/embj.201489643 CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Lee YS, Kennedy WD, Yin YW (2009) Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell 139(2):312–324.  https://doi.org/10.1016/j.cell.2009.07.050 CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Newman JA, Cooper CD, Aitkenhead H, Gileadi O (2015) Structure of the helicase domain of DNA polymerase theta reveals a possible role in the microhomology-mediated end-joining pathway. Structure 23(12):2319–2330.  https://doi.org/10.1016/j.str.2015.10.014 CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Zahn KE, Averill AM, Aller P, Wood RD, Doublie S (2015) Human DNA polymerase theta grasps the primer terminus to mediate DNA repair. Nat Struct Mol Biol 22(4):304–311.  https://doi.org/10.1038/nsmb.2993 CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Lee YS, Gao Y, Yang W (2015) How a homolog of high-fidelity replicases conducts mutagenic DNA synthesis. Nat Struct Mol Biol 22(4):298–303.  https://doi.org/10.1038/nsmb.2985 CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226(5252):1209–1211PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226(5252):1211–1213PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Weissbach A, Baltimore D, Bollum F, Gallo R, Korn D (1975) Nomenclature of eukaryotic DNA polymerases. Science 190(4212):401–402PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Bolden A, Noy GP, Weissbach A (1977) DNA polymerase of mitochondria is a gamma-polymerase. J Biol Chem 252(10):3351–3356PubMedGoogle Scholar
  237. 237.
    Hubscher U, Kuenzle CC, Spadari S (1979) Functional roles of DNA polymerases beta and gamma. Proc Natl Acad Sci USA 76(5):2316–2320PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Genga A, Bianchi L, Foury F (1986) A nuclear mutant of Saccharomyces cerevisiae deficient in mitochondrial DNA replication and polymerase activity. J Biol Chem 261(20):9328–9332PubMedPubMedCentralGoogle Scholar
  239. 239.
    Lestienne P (1987) Evidence for a direct role of the DNA polymerase gamma in the replication of the human mitochondrial DNA in vitro. Biochem Biophys Res Commun 146(3):1146–1153PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Stumpf JD, Saneto RP, Copeland WC (2013) Clinical and molecular features of POLG-related mitochondrial disease. Cold Spring Harb Perspect Biol 5(4):a011395.  https://doi.org/10.1101/cshperspect.a011395 CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Sohl CD, Szymanski MR, Mislak AC, Shumate CK, Amiralaei S, Schinazi RF, Anderson KS, Yin YW (2015) Probing the structural and molecular basis of nucleotide selectivity by human mitochondrial DNA polymerase gamma. Proc Natl Acad Sci USA 112(28):8596–8601.  https://doi.org/10.1073/pnas.1421733112 CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Lewis W, Day BJ, Copeland WC (2003) Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov 2(10):812–822.  https://doi.org/10.1038/nrd1201 CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Krasich R, Copeland WC (2017) DNA polymerases in the mitochondria: a critical review of the evidence. Front Biosci (Landmark Ed) 22:692–709CrossRefGoogle Scholar
  244. 244.
    Yang MY, Bowmaker M, Reyes A, Vergani L, Angeli P, Gringeri E, Jacobs HT, Holt IJ (2002) Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111(4):495–505PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28(4):693–705PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Brown TA, Cecconi C, Tkachuk AN, Bustamante C, Clayton DA (2005) Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev 19(20):2466–2476.  https://doi.org/10.1101/gad.1352105 CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Kasamatsu H, Vinograd J (1973) Unidirectionality of replication in mouse mitochondrial DNA. Nat New Biol 241(108):103–105PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Yakubovskaya E, Lukin M, Chen Z, Berriman J, Wall JS, Kobayashi R, Kisker C, Bogenhagen DF (2007) The EM structure of human DNA polymerase gamma reveals a localized contact between the catalytic and accessory subunits. EMBO J 26(19):4283–4291.  https://doi.org/10.1038/sj.emboj.7601843 CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Miralles Fuste J, Shi Y, Wanrooij S, Zhu X, Jemt E, Persson O, Sabouri N, Gustafsson CM, Falkenberg M (2014) In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication. PLoS Genet 10(12):e1004832.  https://doi.org/10.1371/journal.pgen.1004832 CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Graves SW, Johnson AA, Johnson KA (1998) Expression, purification, and initial kinetic characterization of the large subunit of the human mitochondrial DNA polymerase. Biochemistry 37(17):6050–6058.  https://doi.org/10.1021/bi972685u CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Johnson AA, Tsai Y, Graves SW, Johnson KA (2000) Human mitochondrial DNA polymerase holoenzyme: reconstitution and characterization. Biochemistry 39(7):1702–1708PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Johnson AA, Johnson KA (2001) Exonuclease proofreading by human mitochondrial DNA polymerase. J Biol Chem 276(41):38097–38107.  https://doi.org/10.1074/jbc.M106046200 CrossRefPubMedGoogle Scholar
  253. 253.
    Szymanski MR, Kuznetsov VB, Shumate C, Meng Q, Lee YS, Patel G, Patel S, Yin YW (2015) Structural basis for processivity and antiviral drug toxicity in human mitochondrial DNA replicase. EMBO J 34(14):1959–1970.  https://doi.org/10.15252/embj.201591520 CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Prakash A, Doublie S (2015) Base excision repair in the mitochondria. J Cell Biochem 116(8):1490–1499.  https://doi.org/10.1002/jcb.25103 CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Copeland WC, Kasiviswanathan R, Longley MJ (2016) Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase gamma. Methods Mol Biol 1351:19–26.  https://doi.org/10.1007/978-1-4939-3040-1_2 CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Seki M, Masutani C, Yang LW, Schuffert A, Iwai S, Bahar I, Wood RD (2004) High-efficiency bypass of DNA damage by human DNA polymerase Q. EMBO J 23(22):4484–4494.  https://doi.org/10.1038/sj.emboj.7600424 CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Takata K, Shimizu T, Iwai S, Wood RD (2006) Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol. J Biol Chem 281(33):23445–23455.  https://doi.org/10.1074/jbc.M604317200 CrossRefPubMedGoogle Scholar
  258. 258.
    Yoon JH, Roy Choudhury J, Park J, Prakash S, Prakash L (2014) A role for DNA polymerase theta in promoting replication through oxidative DNA lesion, thymine glycol, in human cells. J Biol Chem 289(19):13177–13185.  https://doi.org/10.1074/jbc.M114.556977 CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Arana ME, Seki M, Wood RD, Rogozin IB, Kunkel TA (2008) Low-fidelity DNA synthesis by human DNA polymerase theta. Nucleic Acids Res 36(11):3847–3856.  https://doi.org/10.1093/nar/gkn310 CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MI, O’Connor KW, Konstantinopoulos PA, Elledge SJ, Boulton SJ, Yusufzai T, D’Andrea AD (2015) Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair. Nature 518(7538):258–262.  https://doi.org/10.1038/nature14184 CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Kent T, Chandramouly G, McDevitt SM, Ozdemir AY, Pomerantz RT (2015) Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta. Nat Struct Mol Biol 22(3):230–237.  https://doi.org/10.1038/nsmb.2961 CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A (2015) Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature 518(7538):254–257.  https://doi.org/10.1038/nature14157 CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Yousefzadeh MJ, Wyatt DW, Takata K, Mu Y, Hensley SC, Tomida J, Bylund GO, Doublie S, Johansson E, Ramsden DA, McBride KM, Wood RD (2014) Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet 10(10):e1004654.  https://doi.org/10.1371/journal.pgen.1004654 CrossRefPubMedPubMedCentralGoogle Scholar
  264. 264.
    Cancer Genome Atlas Research N (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615.  https://doi.org/10.1038/nature10166 CrossRefGoogle Scholar
  265. 265.
    McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24(11):529–538.  https://doi.org/10.1016/j.tig.2008.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Hogg M, Sauer-Eriksson AE, Johansson E (2012) Promiscuous DNA synthesis by human DNA polymerase theta. Nucleic Acids Res 40(6):2611–2622.  https://doi.org/10.1093/nar/gkr1102 CrossRefPubMedGoogle Scholar
  267. 267.
    Prasad R, Longley MJ, Sharief FS, Hou EW, Copeland WC, Wilson SH (2009) Human DNA polymerase theta possesses 5′-dRP lyase activity and functions in single-nucleotide base excision repair in vitro. Nucleic Acids Res 37(6):1868–1877.  https://doi.org/10.1093/nar/gkp035 CrossRefPubMedPubMedCentralGoogle Scholar
  268. 268.
    Hogg M, Seki M, Wood RD, Doublie S, Wallace SS (2011) Lesion bypass activity of DNA polymerase theta (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts. J Mol Biol 405(3):642–652.  https://doi.org/10.1016/j.jmb.2010.10.041 CrossRefPubMedGoogle Scholar
  269. 269.
    Seki M, Wood RD (2008) DNA polymerase theta (POLQ) can extend from mismatches and from bases opposite a (6–4) photoproduct. DNA Repair 7(1):119–127.  https://doi.org/10.1016/j.dnarep.2007.08.005 CrossRefPubMedGoogle Scholar
  270. 270.
    Higgins GS, Harris AL, Prevo R, Helleday T, McKenna WG, Buffa FM (2010) Overexpression of POLQ confers a poor prognosis in early breast cancer patients. Oncotarget 1(3):175–184.  https://doi.org/10.18632/oncotarget.124 CrossRefPubMedPubMedCentralGoogle Scholar
  271. 271.
    Goff JP, Shields DS, Seki M, Choi S, Epperly MW, Dixon T, Wang H, Bakkenist CJ, Dertinger SD, Torous DK, Wittschieben J, Wood RD, Greenberger JS (2009) Lack of DNA polymerase theta (POLQ) radiosensitizes bone marrow stromal cells in vitro and increases reticulocyte micronuclei after total-body irradiation. Radiat Res 172(2):165–174.  https://doi.org/10.1667/RR1598.1 CrossRefPubMedPubMedCentralGoogle Scholar
  272. 272.
    Kawamura K, Bahar R, Seimiya M, Chiyo M, Wada A, Okada S, Hatano M, Tokuhisa T, Kimura H, Watanabe S, Honda I, Sakiyama S, Tagawa M (2004) DNA polymerase theta is preferentially expressed in lymphoid tissues and upregulated in human cancers. Int J Cancer 109(1):9–16.  https://doi.org/10.1002/ijc.11666 CrossRefPubMedGoogle Scholar
  273. 273.
    Wood RD, Doublie S (2016) DNA polymerase theta (POLQ), double-strand break repair, and cancer. DNA Repair 44:22–32.  https://doi.org/10.1016/j.dnarep.2016.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50.  https://doi.org/10.1146/annurev.biochem.76.052305.115300 CrossRefPubMedGoogle Scholar
  275. 275.
    Tafel AA, Wu L, McHugh PJ (2011) Human HEL308 localizes to damaged replication forks and unwinds lagging strand structures. J Biol Chem 286(18):15832–15840.  https://doi.org/10.1074/jbc.M111.228189 CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    Buttner K, Nehring S, Hopfner KP (2007) Structural basis for DNA duplex separation by a superfamily-2 helicase. Nat Struct Mol Biol 14(7):647–652.  https://doi.org/10.1038/nsmb1246 CrossRefPubMedGoogle Scholar
  277. 277.
    Guy CP, Bolt EL (2005) Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res 33(11):3678–3690.  https://doi.org/10.1093/nar/gki685 CrossRefPubMedPubMedCentralGoogle Scholar
  278. 278.
    Maga G, Shevelev I, Ramadan K, Spadari S, Hubscher U (2002) DNA polymerase theta purified from human cells is a high-fidelity enzyme. J Mol Biol 319(2):359–369.  https://doi.org/10.1016/S0022-2836(02)00325-X CrossRefPubMedGoogle Scholar
  279. 279.
    Seki M, Marini F, Wood RD (2003) POLQ (Pol theta), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Res 31(21):6117–6126PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Marini F, Kim N, Schuffert A, Wood RD (2003) POLN, a nuclear PolA family DNA polymerase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem 278(34):32014–32019.  https://doi.org/10.1074/jbc.M305646200 CrossRefPubMedGoogle Scholar
  281. 281.
    Arana ME, Potapova O, Kunkel TA, Joyce CM (2011) Kinetic analysis of the unique error signature of human DNA polymerase nu. Biochemistry 50(46):10126–10135.  https://doi.org/10.1021/bi201197p CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Arana ME, Takata K, Garcia-Diaz M, Wood RD, Kunkel TA (2007) A unique error signature for human DNA polymerase nu. DNA Repair (Amst) 6(2):213–223.  https://doi.org/10.1016/j.dnarep.2006.09.012 CrossRefGoogle Scholar
  283. 283.
    Yamanaka K, Minko IG, Takata K, Kolbanovskiy A, Kozekov ID, Wood RD, Rizzo CJ, Lloyd RS (2010) Novel enzymatic function of DNA polymerase nu in translesion DNA synthesis past major groove DNA-peptide and DNA-DNA cross-links. Chem Res Toxicol 23(3):689–695.  https://doi.org/10.1021/tx900449u CrossRefPubMedPubMedCentralGoogle Scholar
  284. 284.
    Beard WA, Wilson SH (2015) Structures of human DNA polymerases nu and theta expose their end game. Nat Struct Mol Biol 22(4):273–275.  https://doi.org/10.1038/nsmb.3006 CrossRefPubMedGoogle Scholar
  285. 285.
    Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12(6):447–464.  https://doi.org/10.1038/nrd4010 CrossRefPubMedGoogle Scholar
  286. 286.
    Korzhnev DM, Hadden MK (2016) Targeting the translesion synthesis pathway for the development of anti-cancer chemotherapeutics. J Med Chem 59(20):9321–9336.  https://doi.org/10.1021/acs.jmedchem.6b00596 CrossRefPubMedGoogle Scholar
  287. 287.
    Rechkoblit O, Gupta YK, Malik R, Rajashankar KR, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2016) Structure and mechanism of human PrimPol, a DNA polymerase with primase activity. Sci Adv 2(10):e1601317.  https://doi.org/10.1126/sciadv.1601317 CrossRefPubMedPubMedCentralGoogle Scholar
  288. 288.
    Korona DA, LeCompte KG, Pursell ZF (2011) The high fidelity and unique error signature of human DNA polymerase ε. Nucleic Acids Res 39(5):1763–1773.  https://doi.org/10.1093/nar/gkq1034 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicole M. Hoitsma
    • 1
  • Amy M. Whitaker
    • 1
  • Matthew A. Schaich
    • 1
  • Mallory R. Smith
    • 1
  • Max S. Fairlamb
    • 1
  • Bret D. Freudenthal
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations