Inhibition of HIV replication through siRNA carried by CXCR4-targeted chimeric nanobody

  • Catarina Cunha-Santos
  • Pedro Ricardo Lucas Perdigao
  • Francisco Martin
  • Joana Gomes Oliveira
  • Miguel Cardoso
  • Ana Manuel
  • Nuno Taveira
  • Joao GoncalvesEmail author
Original Article


Small interfering RNA (siRNA) application in therapy still faces a major challenge with the lack of an efficient and specific delivery system. Current vehicles are often responsible for poor efficacy, safety concerns, and burden costs of siRNA-based therapeutics. Here, we describe a novel strategy for targeted delivery of siRNA molecules to inhibit human immunodeficiency virus (HIV) infection. Specific membrane translocation of siRNA inhibitor was addressed by an engineered nanobody targeting the HIV co-receptor CXCR4 (NbCXCR4) in fusion with a single-chain variable fragment (4M5.3) that carried the FITC-conjugated siRNA. 4M5.3–NbCXCR4 conjugate (4M5.3X4) efficiently targeted CXCR4+ T lymphocytes, specifically translocating siRNA by receptor-mediated endocytosis. Targeted delivery of siRNA directed to the mRNA of HIV transactivator tat silenced Tat-driven viral transcription and inhibited the replication of distinct virus clades. In summary, we have shown that the engineered nanobody chimera developed in this study constitutes an efficient and specific delivery method of siRNAs through CXCR4 receptor.


Small interfering RNA CXCR4 Nanobody Delivery HIV 



This work was supported by the HIVERA—Harmonizing, Integrating and Vitalizing European Research on AIDS/HIV [Grant number HIVERA/0002/2013], and the Fundação para a Ciência e a Tecnologia—Ministério da Educação e Ciência (FCT-MEC), Portugal [Grant numbers UTAP-ICDT/DTP-FTO/0016/2014, VIH/SAU/0013/2011, VIH/SAU/0020/2011, VIH/SAU/0029/2011, PTDC/SAU-EPI/122400/2010]. CC-S acknowledges FCT-MEC for PhD fellowship SFRH/BD/73838/2010. PRLP acknowledges FCT-MEC for PhD fellowship SFRH/BD/81941/2011. FM acknowledges FCT-MEC for PhD fellowship SFRH/BD/87488/2012.

Author contributions

CC-S, NT, and JG conceived and designed the experiments. CC-S, PRLP, FM, JGO, MC, and AM performed the experiments and analyzed the data. CC-S drafted the manuscript. All authors read and approved the final manuscript.

Supplementary material

18_2019_3334_MOESM1_ESM.docx (395 kb)
Supplementary material 1 (DOCX 395 kb)


  1. 1.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. CrossRefGoogle Scholar
  2. 2.
    Daka A, Peer D (2012) RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev 64(13):1508–1521. CrossRefPubMedGoogle Scholar
  3. 3.
    Krebs MD, Alsberg E. Localized, targeted, and sustained siRNA delivery. Chemistry 17(11):3054–3062 (2011). CrossRefGoogle Scholar
  4. 4.
    Bobbin ML, Burnett JC, Rossi JJ (2015) RNA interference approaches for treatment of HIV-1 infection. Genome Med 7(1):50.
  5. 5.
    Spagnou S, Miller AD, Keller M (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 43(42):13348–13356. PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014):173–178. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tabernero J, Shapiro GI, LoRusso PM et al (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3(4):406–417. PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Schultheis B, Strumberg D, Santel A et al (2014) First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol 32(36):4141–4148. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428):446–448PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Desmyter A, Transue TR, Ghahroudi MA et al (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3(9):803–811. CrossRefGoogle Scholar
  11. 11.
    Ward ES, Güssow D, Griffiths AD, Jones PT, Winter G (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341(6242):544–546PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Amara A, Gall SL, Schwartz O et al (1997) HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR12 contributes to inhibition of HIV replication. J Exp Med 186(1):139–146PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kularatne SA, Deshmukh V, Ma J et al (2014) A CXCR13-targeted site-specific antibody-drug conjugate. Angew Chemie Int Ed 53(44):11863–11867CrossRefGoogle Scholar
  14. 14.
    Egorova A, Kiselev A, Hakli M, Ruponen M, Baranov V, Urtti A (2009) Chemokine-derived peptides as carriers for gene delivery to CXCR1 expressing cells. J Gene Med 11(9):772–781. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Egorova A, Bogacheva M, Shubina A, Baranov V, Kiselev A (2014) Development of a receptor-targeted gene delivery system using CXCR1 ligand-conjugated cross-linking peptides. J Gene Med 16(11–12):336–351. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jähnichen S, Blanchetot C, Maussang D et al (2010) CXCR16 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci USA 107(47):20565–20570PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Midelfort KS, Hernandez HH, Lippow SM, Tidor B, Drennan CL, Wittrup KD (2004) Substantial energetic improvement with minimal structural perturbation in a high affinity mutant antibody. J Mol Biol 343(3):685–701PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Weiss A, Wiskocil RL, Stobo JD (1984) The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J Immunol 133(1):123–128PubMedPubMedCentralGoogle Scholar
  19. 19.
    Smith SD, Shatsky M, Cohen PS, Warnke R, Link MP, Glader BE (1984) Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines. Cancer Res 44(12 Pt 1):5657–5660.
  20. 20.
    Platt EJ, Bilska M, Kozak SL, Kabat D, Montefiori DC (2009) Evidence that ecotropic murine leukemia virus contamination in TZM-bl cells does not affect the outcome of neutralizing antibody assays with human immunodeficiency virus type 1. J Virol 83(16):8289–8292PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wei X, Decker JM, Liu H et al (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46(6):1896–1905PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Takeuchi Y, McClure MO, Pizzato M (2008) Identification of gammaretroviruses constitutively released from cell lines used for human immunodeficiency virus research. J Virol 82(24):12585–12588PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Derdeyn CA, Decker JM, Sfakianos JN et al (2000) Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 74(18):8358–8367PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D (1998) Effects of CCR24 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. J Virol 72(4):2855–2864PubMedPubMedCentralGoogle Scholar
  25. 25.
    Adachi A, Gendelman HE, Koenig S et al (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59(2):284–291PubMedPubMedCentralGoogle Scholar
  26. 26.
    Lahm HW, Stein S (1985) Characterization of recombinant human interleukin-2 with micromethods. J Chromatogr 326:357–361. CrossRefGoogle Scholar
  27. 27.
    Godinho-Santos A, Hance AJ, Gonçalves J, Mammano F (2016) CIB1 and CIB2 are HIV-1 helper factors involved in viral entry. Sci Rep 6(1):30927.
  28. 28.
    Borrego P, Calado R, Marcelino JM et al (2012) Baseline susceptibility of primary HIV-2 to entry inhibitors. Antivir Ther 17(3):565–570PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Saayman S, Barichievy S, Capovilla A, Morris KV, Arbuthnot P, Weinberg MS (2008) The efficacy of generating three independent anti-HIV-1 siRNAs from a single U6 RNA Pol III-Expressed long hairpin RNA. PLoS One 3(7):e2602PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Blanchetot C et al (2011) US 2011/0318347 A1Google Scholar
  31. 31.
    Cunha-Santos C, Figueira TN, Borrego P et al (2016) Development of synthetic light-chain antibodies as novel and potent HIV fusion inhibitors. Aids. 30(11):1691–1701PubMedCrossRefGoogle Scholar
  32. 32.
    Oliveira SS, Da Silva FA, Lourenco S, Freitas-Vieira A, Santos ACC, Goncalves J (2012) Assessing combinatorial strategies to multimerize libraries of single-domain antibodies. Biotechnol Appl Biochem 59(3):193–204PubMedCrossRefGoogle Scholar
  33. 33.
    Hou P, Chen S, Wang S et al (2015) Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep 5:15577.
  34. 34.
    Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 94(5):1925–1930. CrossRefGoogle Scholar
  35. 35.
    Ott M, Geyer M, Zhou Q (2011) The Control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe 10(5):426–435. CrossRefGoogle Scholar
  36. 36.
    Zuckerman JE, Davis ME (2015) Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov 14(12):843–856. CrossRefPubMedGoogle Scholar
  37. 37.
    Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143. PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lorenzer C, Dirin M, Winkler A-M, Baumann V, Winkler J (2015) Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release 203:1–15PubMedCrossRefGoogle Scholar
  39. 39.
    Egorova A, Shubina A, Sokolov D, Selkov S, Baranov V, Kiselev A (2016) CXCR1-targeted modular peptide carriers for efficient anti-VEGF siRNA delivery. Int J Pharm 515(1–2):431–440PubMedCrossRefGoogle Scholar
  40. 40.
    Song E, Zhu P, Lee S-K et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23(6):709–717PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kumar P, Ban H-S, Kim S-S et al (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134(4):577–586. PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M (2007) Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci USA 104(10):4095–4100. CrossRefGoogle Scholar
  43. 43.
    Schneider B, Grote M, John M et al (2012) Targeted siRNA delivery and mRNA knockdown mediated by bispecific digoxigenin-binding antibodies. Mol Ther Nucleic Acids 1:e46PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Zhou J, Swiderski P, Li H et al (2009) Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 37(9):3094–3109. PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zhou J, Li H, Li S, Zaia J, Rossi JJ (2008) Novel dual inhibitory function aptamer–siRNA delivery system for HIV-1 therapy. Mol Ther 16(8):1481–1489PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Berahovich RD, Lai NLNL, Wei Z, Lanier LL, Schall TJ (2006) Evidence for NK cell subsets based on chemokine receptor expression. J Immunol 177(11):7833–7840. PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Poles MA, Elliott J, Taing P, Anton PA, Chen ISY (2001) A preponderance of CCR47 + CXCR47 + mononuclear cells enhances gastrointestinal mucosal susceptibility to human immunodeficiency virus type 1 infection. J Virol 75(18):8390–8399PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tebas P, Stein D, Tang WW et al (2014) Gene Editing of CCR1 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med 370(10):901–910. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Perez EE, Wang J, Miller JC et al (2008) Establishment of HIV-1 resistance in CD4 + T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26(7):808–816. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Holt N, Wang J, Kim K et al (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28(8):839–847. PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Westby M, Lewis M, Whitcomb J et al (2006) Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir. J Virol 80(10):4909–4920. PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Poveda E (2015) HIV tropism shift: new paradigm on cell therapy strategies for HIV cure. AIDS Rev 17(1):65.
  53. 53.
    Darcis G, Van Driessche B, Van Lint C (2017) HIV latency: should we shock or lock? Trends Immunol 38:217–228PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Perdigao P, Gaj T, Santa-Marta M, Barbas CF, Goncalves J (2016) Reactivation of latent HIV-1 expression by engineered TALE transcription factors. PLoS One 11(3):1–18CrossRefGoogle Scholar
  55. 55.
    Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST (2015) The tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio 6(4):e00465.
  56. 56.
    Kessing CF, Nixon CC, Li C et al (2017) In vivo suppression of HIV rebound by didehydro-cortistatin A, a “block-and-lock” strategy for HIV-1 Treatment. Cell Rep 21(3):600–611. PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Policicchio BB, Pandrea I, Apetrei C (2016) Animal models for HIV cure research. Front Immunol 7:12.
  58. 58.
    Boden D, Pusch O, Lee F, Tucker L, Ramratnam B (2003) Human immunodeficiency virus type 1 escape from RNA interference. J Virol 77(21):11531–11535. PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Das AT, Brummelkamp TR, Westerhout EM et al (2004) Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 78(5):2601–2605. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Catarina Cunha-Santos
    • 1
  • Pedro Ricardo Lucas Perdigao
    • 1
  • Francisco Martin
    • 2
  • Joana Gomes Oliveira
    • 1
  • Miguel Cardoso
    • 1
  • Ana Manuel
    • 1
  • Nuno Taveira
    • 2
    • 3
  • Joao Goncalves
    • 1
    Email author
  1. 1.Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de LisboaLisbonPortugal
  2. 2.HIV Evolution, Epidemiology and Prevention Department, Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de LisboaLisbonPortugal
  3. 3.Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas MonizMonte de CaparicaPortugal

Personalised recommendations