The CRL4-DCAF13 ubiquitin E3 ligase supports oocyte meiotic resumption by targeting PTEN degradation

  • Jue Zhang
  • Yin-Li Zhang
  • Long-Wen Zhao
  • Shuai-Bo Pi
  • Song-Ying Zhang
  • Chao Tong
  • Heng-Yu FanEmail author
Original Article


Cullin ring-finger ubiquitin ligase 4 (CRL4) has multiple functions in the maintenance of oocyte survival and meiotic cell cycle progression. DCAF13, a novel CRL4 adaptor, is essential for oocyte development. But the mechanisms by which CRL4-DCAF13 supports meiotic maturation remained unclear. In this study, we demonstrated that DCAF13 stimulates the meiotic resumption-coupled activation of protein synthesis in oocytes, partially by maintaining the activity of PI3K signaling pathway. CRL4-DCAF13 targets the polyubiquitination and degradation of PTEN, a lipid phosphatase that inhibits PI3K pathway as well as oocyte growth and maturation. Dcaf13 knockout in oocytes caused decreased CDK1 activity and impaired meiotic cell cycle progression and chromosome condensation defects. As a result, chromosomes fail to be aligned at the spindle equatorial plate, the spindle assembly checkpoint is activated, and most Dcaf13 null oocytes are arrested at the prometaphase I. The DCAF13-dependent PTEN degradation mechanism fits in as a missing link between CRL4 ubiquitin E3 ligase and PI3K pathway, both of which are crucial for translational activation during oocyte GV-MII transition.


Female germ cell Meiosis DDB1–CUL4-associated factor 13 Female fertility Ubiquitin E3 ligase PI3K signaling pathway 



This study is funded by the National Key Research and Developmental Program of China (2017YFC1001100, 2017YFC1001500, 2016YFC1000600), National Natural Science Foundation of China (31528016, 31671558), and The Key Research and Development Program of Zhejiang Province (2017C03022).

Compliance with ethical standards

Conflict of interest

The authors declare no competing interest.

Supplementary material

18_2019_3280_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)


  1. 1.
    Zuccotti M, Giorgi Rossi P, Martinez A, Garagna S, Forabosco A, Redi CA (1998) Meiotic and developmental competence of mouse antral oocytes. Biol Reprod 58(3):700–704CrossRefGoogle Scholar
  2. 2.
    Tan JH, Wang HL, Sun XS, Liu Y, Sui HS, Zhang J (2009) Chromatin configurations in the germinal vesicle of mammalian oocytes. Mol Hum Reprod 15(1):1–9. CrossRefGoogle Scholar
  3. 3.
    Mehlmann LM (2005) Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 130(6):791–799. CrossRefGoogle Scholar
  4. 4.
    Sun SC, Kim NH (2013) Molecular mechanisms of asymmetric division in oocytes. Microsc Microanal 19(4):883–897. CrossRefGoogle Scholar
  5. 5.
    Pan B, Li J (2019) The art of oocyte meiotic arrest regulation. Reprod Biol Endocrinol 17(1):8. CrossRefGoogle Scholar
  6. 6.
    Li XM, Yu C, Wang ZW, Zhang YL, Liu XM, Zhou D, Sun QY, Fan HY (2013) DNA topoisomerase II is dispensable for oocyte meiotic resumption but is essential for meiotic chromosome condensation and separation in mice. Biol Reprod 89(5):118. CrossRefGoogle Scholar
  7. 7.
    Sha QQ, Dai XX, Dang Y, Tang F, Liu J, Zhang YL, Fan HY (2017) A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Development 144(3):452–463. CrossRefGoogle Scholar
  8. 8.
    Dai XX, Jiang JC, Sha QQ, Jiang Y, Ou XH, Fan HY (2018) A combinatorial code for mRNA 3′-UTR-mediated translational control in the mouse oocyte. Nucleic Acids Res.
  9. 9.
    Huo LJ, Fan HY, Liang CG, Yu LZ, Zhong ZS, Chen DY, Sun QY (2004) Regulation of ubiquitin-proteasome pathway on pig oocyte meiotic maturation and fertilization. Biol Reprod 71(3):853–862. CrossRefGoogle Scholar
  10. 10.
    Jones KT (2011) Anaphase-promoting complex control in female mouse meiosis. Results Probl Cell Differ 53:343–363. CrossRefGoogle Scholar
  11. 11.
    Yu C, Zhang YL, Pan WW, Li XM, Wang ZW, Ge ZJ, Zhou JJ, Cang Y, Tong C, Sun QY, Fan HY (2013) CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 342(6165):1518–1521. CrossRefGoogle Scholar
  12. 12.
    Lee J, Zhou P (2007) DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 26(6):775–780. CrossRefGoogle Scholar
  13. 13.
    Iovine B, Iannella ML, Bevilacqua MA (2011) Damage-specific DNA binding protein 1 (DDB1): a protein with a wide range of functions. Int J Biochem Cell Biol 43(12):1664–1667. CrossRefGoogle Scholar
  14. 14.
    Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ (2011) Global identification of modular cullin-RING ligase substrates. Cell 147(2):459–474. CrossRefGoogle Scholar
  15. 15.
    Bennett EJ, Rush J, Gygi SP, Harper JW (2010) Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143(6):951–965. CrossRefGoogle Scholar
  16. 16.
    Pan WW, Zhou JJ, Yu C, Xu Y, Guo LJ, Zhang HY, Zhou D, Song FZ, Fan HY (2013) Ubiquitin E3 ligase CRL4(CDT2/DCAF2) as a potential chemotherapeutic target for ovarian surface epithelial cancer. J Biol Chem 288(41):29680–29691. CrossRefGoogle Scholar
  17. 17.
    Yu C, Ji SY, Sha QQ, Sun QY, Fan HY (2015) CRL4-DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation. Nat Commun 6:8017. CrossRefGoogle Scholar
  18. 18.
    Yu C, Xu YW, Sha QQ, Fan HY (2015) CRL4DCAF1 is required in activated oocytes for follicle maintenance and ovulation. Mol Hum Reprod 21(2):195–205. CrossRefGoogle Scholar
  19. 19.
    Xu YW, Cao LR, Wang M, Xu Y, Wu X, Liu J, Tong C, Fan HY (2017) Maternal DCAF2 is crucial for maintenance of genome stability during the first cell cycle in mice. J Cell Sci 130(19):3297–3307. CrossRefGoogle Scholar
  20. 20.
    Zhang J, Zhang YL, Zhao LW, Guo JX, Yu JL, Ji SY, Cao LR, Zhang SY, Shen L, Ou XH, Fan HY (2018) Mammalian nucleolar protein DCAF13 is essential for ovarian follicle maintenance and oocyte growth by mediating rRNA processing. Cell Death Differ. Google Scholar
  21. 21.
    Zhang YL, Zhao LW, Zhang J, Le R, Ji SY, Chen C, Gao Y, Li D, Gao S, Fan HY (2018) DCAF13 promotes pluripotency by negatively regulating SUV39H1 stability during early embryonic development. EMBO J. Google Scholar
  22. 22.
    Sha QQ, Dai XX, Jiang JC, Yu C, Jiang Y, Liu J, Ou XH, Zhang SY, Fan HY (2018) CFP1 coordinates histone H3 lysine-4 trimethylation and meiotic cell cycle progression in mouse oocytes. Nat Commun 9(1):3477. CrossRefGoogle Scholar
  23. 23.
    Zhang YL, Liu XM, Ji SY, Sha QQ, Zhang J, Fan HY (2015) ERK1/2 activities are dispensable for oocyte growth but are required for meiotic maturation and pronuclear formation in mouse. J Genet Genomics 42(9):477–485. CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Yan Z, Qin Q, Nisenblat V, Chang HM, Yu Y, Wang T, Lu C, Yang M, Yang S, Yao Y, Zhu X, Xia X, Dang Y, Ren Y, Yuan P, Li R, Liu P, Guo H, Han J, He H, Zhang K, Wang Y, Wu Y, Li M, Qiao J, Yan J, Yan L (2018) Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell. Google Scholar
  25. 25.
    Brunet S, Dumont J, Lee KW, Kinoshita K, Hikal P, Gruss OJ, Maro B, Verlhac MH (2008) Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One 3(10):e3338. CrossRefGoogle Scholar
  26. 26.
    Wang WH, Sun QY (2006) Meiotic spindle, spindle checkpoint and embryonic aneuploidy. Front Biosci 11:620–636CrossRefGoogle Scholar
  27. 27.
    Sanders JR, Jones KT (2018) Regulation of the meiotic divisions of mammalian oocytes and eggs. Biochem Soc Trans 46(4):797–806. CrossRefGoogle Scholar
  28. 28.
    Tischer T, Schuh M (2016) The phosphatase Dusp7 drives meiotic resumption and chromosome alignment in mouse oocytes. Cell Rep 17(5):1426–1437. CrossRefGoogle Scholar
  29. 29.
    Mihajlovic AI, FitzHarris G (2018) Segregating chromosomes in the mammalian oocyte. Curr Biol 28(16):R895–R907. CrossRefGoogle Scholar
  30. 30.
    Susor A, Jansova D, Cerna R, Danylevska A, Anger M, Toralova T, Malik R, Supolikova J, Cook MS, Oh JS, Kubelka M (2015) Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat Commun 6:6078. CrossRefGoogle Scholar
  31. 31.
    Jansova D, Koncicka M, Tetkova A, Cerna R, Malik R, Del Llano E, Kubelka M, Susor A (2017) Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle 16(10):927–939. CrossRefGoogle Scholar
  32. 32.
    Adhikari D, Liu K (2014) The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol Cell Endocrinol 382(1):480–487. CrossRefGoogle Scholar
  33. 33.
    Lincoln AJ, Wickramasinghe D, Stein P, Schultz RM, Palko ME, De Miguel MP, Tessarollo L, Donovan PJ (2002) Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet 30(4):446–449. CrossRefGoogle Scholar
  34. 34.
    Lan ZJ, Xu X, Cooney AJ (2004) Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. Biol Reprod 71(5):1469–1474. CrossRefGoogle Scholar
  35. 35.
    Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, Hyman AA, Mann M (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163(3):712–723. CrossRefGoogle Scholar
  36. 36.
    Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hamalainen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319(5863):611–613. CrossRefGoogle Scholar
  37. 37.
    Li J, Kawamura K, Cheng Y, Liu S, Klein C, Liu S, Duan EK, Hsueh AJ (2010) Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci USA 107(22):10280–10284. CrossRefGoogle Scholar
  38. 38.
    Chen J, Torcia S, Xie F, Lin CJ, Cakmak H, Franciosi F, Horner K, Onodera C, Song JS, Cedars MI, Ramalho-Santos M, Conti M (2013) Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat Cell Biol 15(12):1415–1423. CrossRefGoogle Scholar
  39. 39.
    Han SJ, Vaccari S, Nedachi T, Andersen CB, Kovacina KS, Roth RA, Conti M (2006) Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation. EMBO J 25(24):5716–5725. CrossRefGoogle Scholar
  40. 40.
    Chen Z, Zhang W, Jiang K, Chen B, Wang K, Lao L, Hou C, Wang F, Zhang C, Shen H (2018) MicroRNA-300 regulates the ubiquitination of PTEN through the CRL4B(DCAF13) E3 ligase in osteosarcoma cells. Mol Ther Nucleic Acids 10:254–268. CrossRefGoogle Scholar
  41. 41.
    Kalous J, Solc P, Baran V, Kubelka M, Schultz RM, Motlik J (2006) PKB/AKT is involved in resumption of meiosis in mouse oocytes. Biol Cell 98(2):111–123. CrossRefGoogle Scholar
  42. 42.
    Sha QQ, Yu JL, Guo JX, Dai XX, Jiang JC, Zhang YL, Yu C, Ji SY, Jiang Y, Zhang SY, Shen L, Ou XH, Fan HY (2018) CNOT6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. EMBO J. Google Scholar
  43. 43.
    Jansen R, Tollervey D, Hurt EC (1993) A U3 snoRNP protein with homology to splicing factor PRP4 and G beta domains is required for ribosomal RNA processing. EMBO J 12(6):2549–2558CrossRefGoogle Scholar
  44. 44.
    Liu Y, Zhao LW, Shen JL, Fan HY, Jin Y (2019) Maternal DCAF13 regulates chromatin tightness to contribute to embryonic development. Sci Rep 9(1):6278. CrossRefGoogle Scholar
  45. 45.
    Kalous J, Tetkova A, Kubelka M, Susor A (2018) Importance of ERK1/2 in regulation of protein translation during oocyte meiosis. Int J Mol Sci 19:3. CrossRefGoogle Scholar
  46. 46.
    Hoshino Y, Sato E (2008) Protein kinase B (PKB/Akt) is required for the completion of meiosis in mouse oocytes. Dev Biol 314(1):215–223. CrossRefGoogle Scholar
  47. 47.
    Tomek W, Smiljakovic T (2005) Activation of Akt (protein kinase B) stimulates metaphase I to metaphase II transition in bovine oocytes. Reproduction 130(4):423–430. CrossRefGoogle Scholar
  48. 48.
    El Sheikh M, Mesalam A, Mesalam AA, Idrees M, Lee KL, Kong IK (2019) Melatonin abrogates the anti-developmental effect of the AKT inhibitor SH6 in bovine oocytes and embryos. Int J Mol Sci 20:12. CrossRefGoogle Scholar
  49. 49.
    Feitosa WB, Morris PL (2018) SUMOylation regulates germinal vesicle breakdown and the Akt/PKB pathway during mouse oocyte maturation. Am J Physiol Cell Physiol 315(1):C115–C121. CrossRefGoogle Scholar
  50. 50.
    Liu L, Li S, Li H, Yu D, Li C, Li G, Cao Y, Feng C, Deng X (2018) Protein kinase Cdelta (PKCdelta) involved in the regulation of pAkt1 (Ser473) on the release of mouse oocytes from diplotene arrest. Cell Biochem Funct 36(4):221–227. CrossRefGoogle Scholar
  51. 51.
    Cao J, Hou P, Chen J, Wang P, Wang W, Liu W, Liu C, He X (2017) The overexpression and prognostic role of DCAF13 in hepatocellular carcinoma. Tumour Biol 39(6):1010428317705753. CrossRefGoogle Scholar
  52. 52.
    Adhikari D, Liu K (2009) Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev 30(5):438–464. CrossRefGoogle Scholar
  53. 53.
    Zheng W, Nagaraju G, Liu Z, Liu K (2012) Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol Cell Endocrinol 356(1–2):24–30. CrossRefGoogle Scholar
  54. 54.
    Reddy P, Adhikari D, Zheng W, Liang S, Hamalainen T, Tohonen V, Ogawa W, Noda T, Volarevic S, Huhtaniemi I, Liu K (2009) PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet 18(15):2813–2824. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouChina

Personalised recommendations