Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 24, pp 4829–4848 | Cite as

Post-translational modification and protein sorting to small extracellular vesicles including exosomes by ubiquitin and UBLs

  • Hiroshi Ageta
  • Kunihiro TsuchidaEmail author
Review
  • 610 Downloads

Abstract

Exosomes, a type of small extracellular vesicles (sEVs), are secreted membrane vesicles that are derived from various cell types, including cancer cells, mesenchymal stem cells, and immune cells via multivesicular bodies (MVBs). These sEVs contain RNAs (mRNA, miRNA, lncRNA, and rRNA), lipids, DNA, proteins, and metabolites, all of which mediate cell-to-cell communication. This communication is known to be implicated in a diverse set of diseases such as cancers and their metastases and degenerative diseases. The molecular mechanisms, by which proteins are modified and sorted to sEVs, are not fully understood. Various cellular processes, including degradation, transcription, DNA repair, cell cycle, signal transduction, and autophagy, are known to be associated with ubiquitin and ubiquitin-like proteins (UBLs). Recent studies have revealed that ubiquitin and UBLs also regulate MVBs and protein sorting to sEVs. Ubiquitin-like 3 (UBL3)/membrane-anchored Ub-fold protein (MUB) acts as a post-translational modification (PTM) factor to regulate efficient protein sorting to sEVs. In this review, we focus on the mechanism of PTM by ubiquitin and UBLs and the pathway of protein sorting into sEVs and discuss the potential biological significance of these processes.

Keywords

Post-translational modification Small extracellular vesicle Exosome Ubiquitin Ubiquitin-like protein Multivesicular body 

Abbreviations

sEVs

Small extracellular vesicles

PTM

Post-translational modification

UBLs

Ubiquitin-like proteins

MVBs

Multivesicular bodies

Notes

Acknowledgements

This work was supported by JSPS KAKENHI (16K08599, 18K07209, 19H05299, and 19H03427), the Ichihara International Scholarship Foundation, Kobayashi Foundation for Cancer, Ohsumi Frontier Science Foundation, and an Intramural Research Grant (26-8, 29-4) for Neurological and Psychiatric Disorders of NCNP.

References

  1. 1.
    Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thery C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 113(8):E968–E977.  https://doi.org/10.1073/pnas.1521230113 CrossRefPubMedGoogle Scholar
  3. 3.
    Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289.  https://doi.org/10.1146/annurev-cellbio-101512-122326 CrossRefGoogle Scholar
  4. 4.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome- mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659.  https://doi.org/10.1038/ncb1596 CrossRefPubMedGoogle Scholar
  5. 5.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383.  https://doi.org/10.1083/jcb.201211138 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, Takasugi M, Watanabe S, Kanemaki MT, Obuse C, Hara E (2017) Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun 8:15287.  https://doi.org/10.1038/ncomms15287 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335.  https://doi.org/10.1038/nature15756 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624.  https://doi.org/10.1038/ncb1725 CrossRefPubMedGoogle Scholar
  9. 9.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891.  https://doi.org/10.1038/nm.2753 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA 103(30):11172–11177.  https://doi.org/10.1073/pnas.0603838103 CrossRefPubMedGoogle Scholar
  11. 11.
    Kanmert D, Cantlon A, Muratore CR, Jin M, O’Malley TT, Lee G, Young-Pearse TL, Selkoe DJ, Walsh DM (2015) C-terminally truncated forms of Tau, but not full-length Tau or its C-terminal fragments, are released from neurons independently of cell death. J Neurosci 35(30):10851–10865.  https://doi.org/10.1523/JNEUROSCI.0387-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lee HJ, Bae EJ, Lee SJ (2014) Extracellular alpha–synuclein-a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 10(2):92–98.  https://doi.org/10.1038/nrneurol.2013.275 CrossRefPubMedGoogle Scholar
  13. 13.
    Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci USA 101(26):9683–9688.  https://doi.org/10.1073/pnas.0308413101 CrossRefPubMedGoogle Scholar
  14. 14.
    Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211(5):582–590.  https://doi.org/10.1002/path.2145 CrossRefGoogle Scholar
  15. 15.
    Szabo-Taylor K, Ryan B, Osteikoetxea X, Szabo TG, Sodar B, Holub M, Nemeth A, Paloczi K, Pallinger E, Winyard P, Buzas EI (2015) Oxidative and other posttranslational modifications in extracellular vesicle biology. Semin Cell Dev Biol 40:8–16.  https://doi.org/10.1016/j.semcdb.2015.02.012 CrossRefPubMedGoogle Scholar
  16. 16.
    Moreno-Gonzalo O, Fernandez-Delgado I, Sanchez-Madrid F (2018) Post-translational add- ons mark the path in exosomal protein sorting. Cell Mol Life Sci 75(1):1–19.  https://doi.org/10.1007/s00018-017-2690-y CrossRefPubMedGoogle Scholar
  17. 17.
    Pagano M (1997) Cell cycle regulation by the ubiquitin pathway. FASEB J 11(13):1067–1075CrossRefGoogle Scholar
  18. 18.
    Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S (1995) Rel/NF- kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 9(22):2723–2735CrossRefGoogle Scholar
  19. 19.
    Hale AJ, Smith CA, Sutherland LC, Stoneman VE, Longthorne VL, Culhane AC, Williams GT (1996) Apoptosis: molecular regulation of cell death. Eur J Biochem 236(1):1–26CrossRefGoogle Scholar
  20. 20.
    Naidoo N, Song W, Hunter-Ensor M, Sehgal A (1999) A role for the proteasome in the light response of the timeless clock protein. Science 285(5434):1737–1741CrossRefGoogle Scholar
  21. 21.
    Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME (1998) Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci 21(12):516–520CrossRefGoogle Scholar
  22. 22.
    Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21(4):799–811CrossRefGoogle Scholar
  23. 23.
    Chain DG, Casadio A, Schacher S, Hegde AN, Valbrun M, Yamamoto N, Goldberg AL, Bartsch D, Kandel ER, Schwartz JH (1999) Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron 22(1):147–156CrossRefGoogle Scholar
  24. 24.
    Ageta H, Kato A, Hatakeyama S, Nakayama K, Isojima Y, Sugiyama H (2001) Regulation of the level of Vesl-1S/Homer-1a proteins by ubiquitin-proteasome proteolytic systems. J Biol Chem 276(19):15893–15897.  https://doi.org/10.1074/jbc.M011097200 CrossRefPubMedGoogle Scholar
  25. 25.
    Ageta H, Kato A, Fukazawa Y, Inokuchi K, Sugiyama H (2001) Effects of proteasome inhibitors on the synaptic localization of Vesl-1S/Homer-1a proteins. Brain Res Mol Brain Res 97(2):186–189CrossRefGoogle Scholar
  26. 26.
    Yao I, Takagi H, Ageta H, Kahyo T, Sato S, Hatanaka K, Fukuda Y, Chiba T, Morone N, Yuasa S, Inokuchi K, Ohtsuka T, Macgregor GR, Tanaka K, Setou M (2007) SCRAPPER- dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell 130(5):943–957.  https://doi.org/10.1016/j.cell.2007.06.052 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Haas AL, Siepmann TJ (1997) Pathways of ubiquitin conjugation. FASEB J 11(14):1257–1268CrossRefGoogle Scholar
  28. 28.
    Welchman RL, Gordon C, Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6(8):599–609.  https://doi.org/10.1038/nrm1700 CrossRefPubMedGoogle Scholar
  29. 29.
    Yang H, Takagi H, Konishi Y, Ageta H, Ikegami K, Yao I, Sato S, Hatanaka K, Inokuchi K, Seog DH, Setou M (2008) Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS) facilitates surface expression of GluR2-containing AMPA receptors. PLoS One 3(7):e2809.  https://doi.org/10.1371/journal.pone.0002809 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382.  https://doi.org/10.1146/annurev.biochem.73.011303.074118 CrossRefPubMedGoogle Scholar
  31. 31.
    Watson IR, Irwin MS, Ohh M (2011) NEDD8 pathways in cancer, Sine Quibus Non. Cancer Cell 19(2):168–176.  https://doi.org/10.1016/j.ccr.2011.01.002 CrossRefPubMedGoogle Scholar
  32. 32.
    Ageta H, Ageta-Ishihara N, Hitachi K, Karayel O, Onouchi T, Yamaguchi H, Kahyo T, Hatanaka K, Ikegami K, Yoshioka Y, Nakamura K, Kosaka N, Nakatani M, Uezumi A, Ide T, Tsutsumi Y, Sugimura H, Kinoshita M, Ochiya T, Mann M, Setou M, Tsuchida K (2018) UBL3 modification influences protein sorting to small extracellular vesicles. Nat Commun 9(1):3936.  https://doi.org/10.1038/s41467-018-06197-y CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular- body sorting. Nat Rev Mol Cell Biol 3(12):893–905.  https://doi.org/10.1038/nrm973 CrossRefPubMedGoogle Scholar
  34. 34.
    Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117.  https://doi.org/10.1038/35052055 CrossRefPubMedGoogle Scholar
  35. 35.
    Seabra MC, Mules EH, Hume AN (2002) Rab GTPases, intracellular traffic and disease. Trends Mol Med 8(1):23–30CrossRefGoogle Scholar
  36. 36.
    Savina A, Fader CM, Damiani MT, Colombo MI (2005) Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6(2):131–143.  https://doi.org/10.1111/j.1600-0854.2004.00257.x CrossRefPubMedGoogle Scholar
  37. 37.
    Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Gronborg M, Mobius W, Rhee J, Barr FA, Simons M (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189(2):223–232.  https://doi.org/10.1083/jcb.200911018 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30.  https://doi.org/10.1038/ncb2000 CrossRefPubMedGoogle Scholar
  39. 39.
    Kirkbride KC, Sung BH, Sinha S, Weaver AM (2011) Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adhes Migr 5(2):187–198.  https://doi.org/10.4161/cam.5.2.14773 CrossRefGoogle Scholar
  40. 40.
    Daly RJ (2004) Cortactin signalling and dynamic actin networks. Biochem J 382(Pt 1):13–25.  https://doi.org/10.1042/BJ20040737 CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM (2016) Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 214(2):197–213.  https://doi.org/10.1083/jcb.201601025 CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91.  https://doi.org/10.1016/j.devcel.2011.05.015 CrossRefPubMedGoogle Scholar
  43. 43.
    Roxrud I, Stenmark H, Malerod L (2010) ESCRT & Co. Biol Cell 102(5):293–318.  https://doi.org/10.1042/bc20090161 CrossRefPubMedGoogle Scholar
  44. 44.
    Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Thery C, Raposo G (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(Pt 24):5553–5565.  https://doi.org/10.1242/jcs.128868 CrossRefPubMedGoogle Scholar
  45. 45.
    Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, Zimmermann P, David G (2012) Syndecan- syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14(7):677–685.  https://doi.org/10.1038/ncb2502 CrossRefPubMedGoogle Scholar
  46. 46.
    Lambaerts K, Van Dyck S, Mortier E, Ivarsson Y, Degeest G, Luyten A, Vermeiren E, Peers B, David G, Zimmermann P (2012) Syntenin, a syndecan adaptor and an Arf6 phosphatidylinositol 4,5-bisphosphate effector, is essential for epiboly and gastrulation cell movements in zebrafish. J Cell Sci 125(Pt 5):1129–1140.  https://doi.org/10.1242/jcs.089987 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, Slavik J, Machala M, Zimmermann P (2014) Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 5:3477.  https://doi.org/10.1038/ncomms4477 CrossRefPubMedGoogle Scholar
  48. 48.
    Stuffers S, Sem Wegner C, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10(7):925–937.  https://doi.org/10.1111/j.1600-0854.2009.00920.x CrossRefPubMedGoogle Scholar
  49. 49.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247.  https://doi.org/10.1126/science.1153124 CrossRefPubMedGoogle Scholar
  50. 50.
    Theos AC, Truschel ST, Tenza D, Hurbain I, Harper DC, Berson JF, Thomas PC, Raposo G, Marks MS (2006) A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev Cell 10(3):343–354.  https://doi.org/10.1016/j.devcel.2006.01.012 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21(4):708–721.  https://doi.org/10.1016/j.devcel.2011.08.019 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190(6):1079–1091.  https://doi.org/10.1083/jcb.201002049 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yu H, Matouschek A (2017) Recognition of client proteins by the proteasome. Annu Rev Biophys 46:149–173.  https://doi.org/10.1146/annurev-biophys-070816-033719 CrossRefPubMedGoogle Scholar
  54. 54.
    Williams RL, Urbe S (2007) The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8(5):355–368.  https://doi.org/10.1038/nrm2162 CrossRefPubMedGoogle Scholar
  55. 55.
    Escrevente C, Keller S, Altevogt P, Costa J (2011) Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11:108.  https://doi.org/10.1186/1471-2407-11-108 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD (2014) Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem 289(32):22258–22267.  https://doi.org/10.1074/jbc.M114.588046 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T (2015) Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep 5:10300.  https://doi.org/10.1038/srep10300 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11(5):675–687.  https://doi.org/10.1111/j.1600-0854.2010.01041.x CrossRefPubMedGoogle Scholar
  59. 59.
    Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, Svensson LM, Morgelin M, Belting M (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288(24):17713–17724.  https://doi.org/10.1074/jbc.M112.445403 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Laulagnier K, Javalet C, Hemming FJ, Chivet M, Lachenal G, Blot B, Chatellard C, Sadoul R (2018) Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons. Cell Mol Life Sci 75(4):757–773.  https://doi.org/10.1007/s00018-017-2664-0 CrossRefPubMedGoogle Scholar
  61. 61.
    Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546(7659):498–503.  https://doi.org/10.1038/nature22341 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Akishiba M, Takeuchi T, Kawaguchi Y, Sakamoto K, Yu HH, Nakase I, Takatani-Nakase T, Madani F, Graslund A, Futaki S (2017) Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat Chem 9(8):751–761.  https://doi.org/10.1038/nchem.2779 CrossRefPubMedGoogle Scholar
  63. 63.
    Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CA (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One 3(1):e1487.  https://doi.org/10.1371/journal.pone.0001487 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Berndsen CE, Wolberger C (2014) New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 21(4):301–307.  https://doi.org/10.1038/nsmb.2780 CrossRefPubMedGoogle Scholar
  65. 65.
    Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125(Pt 3):531–537.  https://doi.org/10.1242/jcs.091777 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Winberg G, Matskova L, Chen F, Plant P, Rotin D, Gish G, Ingham R, Ernberg I, Pawson T (2000) Latent membrane protein 2A of Epstein-Barr virus binds WW domain E3 protein- ubiquitin ligases that ubiquitinate B-cell tyrosine kinases. Mol Cell Biol 20(22):8526–8535CrossRefGoogle Scholar
  67. 67.
    Ikeda M, Ikeda A, Longan LC, Longnecker R (2000) The Epstein-Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Virology 268(1):178–191.  https://doi.org/10.1006/viro.1999.0166 CrossRefPubMedGoogle Scholar
  68. 68.
    Ikeda M, Ikeda A, Longnecker R (2001) PY motifs of Epstein-Barr virus LMP2A regulate protein stability and phosphorylation of LMP2A-associated proteins. J Virol 75(12):5711–5718.  https://doi.org/10.1128/JVI.75.12.5711-5718.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ikeda M, Longnecker R (2007) Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. Virology 360(2):461–468.  https://doi.org/10.1016/j.virol.2006.10.046 CrossRefPubMedGoogle Scholar
  70. 70.
    Putz U, Howitt J, Lackovic J, Foot N, Kumar S, Silke J, Tan SS (2008) Nedd4 family- interacting protein 1 (Ndfip1) is required for the exosomal secretion of Nedd4 family proteins. J Biol Chem 283(47):32621–32627.  https://doi.org/10.1074/jbc.M804120200 CrossRefPubMedGoogle Scholar
  71. 71.
    Sette P, Jadwin JA, Dussupt V, Bello NF, Bouamr F (2010) The ESCRT-associated protein Alix recruits the ubiquitin ligase Nedd4-1 to facilitate HIV-1 release through the LYPXnL L domain motif. J Virol 84(16):8181–8192.  https://doi.org/10.1128/JVI.00634-10 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kikonyogo A, Bouamr F, Vana ML, Xiang Y, Aiyar A, Carter C, Leis J (2001) Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells. Proc Natl Acad Sci USA 98(20):11199–11204.  https://doi.org/10.1073/pnas.201268998 CrossRefPubMedGoogle Scholar
  73. 73.
    Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na + channel deleted in Liddle’s syndrome. EMBO J 15(10):2371–2380CrossRefGoogle Scholar
  74. 74.
    Sterzenbach U, Putz U, Low LH, Silke J, Tan SS, Howitt J (2017) Engineered exosomes as vehicles for biologically active proteins. Mol Ther 25(6):1269–1278.  https://doi.org/10.1016/j.ymthe.2017.03.030 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17(1):87–97.  https://doi.org/10.1016/j.devcel.2009.06.013 CrossRefGoogle Scholar
  76. 76.
    Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26(10):733–744.  https://doi.org/10.1016/j.tcb.2016.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Song P, Trajkovic K, Tsunemi T, Krainc D (2016) Parkin modulates endosomal organization and function of the endo-lysosomal pathway. J Neurosci 36(8):2425–2437.  https://doi.org/10.1523/JNEUROSCI.2569-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101(36):13368–13373.  https://doi.org/10.1073/pnas.0403453101 CrossRefPubMedGoogle Scholar
  79. 79.
    Buschow SI, Liefhebber JM, Wubbolts R, Stoorvogel W (2005) Exosomes contain ubiquitinated proteins. Blood Cells Mol Dis 35(3):398–403.  https://doi.org/10.1016/j.bcmd.2005.08.005 CrossRefPubMedGoogle Scholar
  80. 80.
    Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, Squarcina P, Accornero P, Lozupone F, Lugini L, Stringaro A, Molinari A, Arancia G, Gentile M, Parmiani G, Fais S (2002) Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 195(10):1303–1316CrossRefGoogle Scholar
  81. 81.
    Frangsmyr L, Baranov V, Nagaeva O, Stendahl U, Kjellberg L, Mincheva-Nilsson L (2005) Cytoplasmic microvesicular form of Fas ligand in human early placenta: switching the tissue immune privilege hypothesis from cellular to vesicular level. Mol Hum Reprod 11(1):35–41.  https://doi.org/10.1093/molehr/gah129 CrossRefPubMedGoogle Scholar
  82. 82.
    Jodo S, Hohlbaum AM, Xiao S, Chan D, Strehlow D, Sherr DH, Marshak-Rothstein A, Ju ST (2000) CD95 (Fas) ligand-expressing vesicles display antibody-mediated, FcR- dependent enhancement of cytotoxicity. J Immunol 165(10):5487–5494CrossRefGoogle Scholar
  83. 83.
    Martinez-Lorenzo MJ, Anel A, Gamen S, Monle I, Lasierra P, Larrad L, Pineiro A, Alava MA, Naval J (1999) Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J Immunol 163(3):1274–1281PubMedGoogle Scholar
  84. 84.
    Monleon I, Martinez-Lorenzo MJ, Monteagudo L, Lasierra P, Taules M, Iturralde M, Pineiro A, Larrad L, Alava MA, Naval J, Anel A (2001) Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol 167(12):6736–6744CrossRefGoogle Scholar
  85. 85.
    Zuccato E, Blott EJ, Holt O, Sigismund S, Shaw M, Bossi G, Griffiths GM (2007) Sorting of Fas ligand to secretory lysosomes is regulated by mono-ubiquitylation and phosphorylation. J Cell Sci 120(Pt 1):191–199.  https://doi.org/10.1242/jcs.03315 CrossRefPubMedGoogle Scholar
  86. 86.
    Zhang HG, Kim H, Liu C, Yu S, Wang J, Grizzle WE, Kimberly RP, Barnes S (2007) Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity. Biochim Biophys Acta 1773(7):1116–1123.  https://doi.org/10.1016/j.bbamcr.2007.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Moser JJ, Fritzler MJ (2010) Cytoplasmic ribonucleoprotein (RNP) bodies and their relationship to GW/P bodies. Int J Biochem Cell Biol 42(6):828–843.  https://doi.org/10.1016/j.biocel.2009.11.018 CrossRefPubMedGoogle Scholar
  88. 88.
    Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11(9):1143–1149.  https://doi.org/10.1038/ncb1929 CrossRefPubMedGoogle Scholar
  89. 89.
    Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS (2007) Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 110(9):3234–3244.  https://doi.org/10.1182/blood-2007-03-079152 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Giri PK, Kruh NA, Dobos KM, Schorey JS (2010) Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosis-infected and culture filtrate protein- treated macrophages. Proteomics 10(17):3190–3202.  https://doi.org/10.1002/pmic.200900840 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Smith VL, Jackson L, Schorey JS (2015) Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. J Immunol 195(6):2722–2730.  https://doi.org/10.4049/jimmunol.1403186 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Lee HS, Jeong J, Lee KJ (2009) Characterization of vesicles secreted from insulinoma NIT-1 cells. J Proteome Res 8(6):2851–2862.  https://doi.org/10.1021/pr900009y CrossRefPubMedGoogle Scholar
  93. 93.
    Koppen T, Weckmann A, Muller S, Staubach S, Bloch W, Dohmen RJ, Schwientek T (2011) Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells. Proteomics 11(22):4397–4410.  https://doi.org/10.1002/pmic.201000774 CrossRefPubMedGoogle Scholar
  94. 94.
    Burke MC, Oei MS, Edwards NJ, Ostrand-Rosenberg S, Fenselau C (2014) Ubiquitinated proteins in exosomes secreted by myeloid-derived suppressor cells. J Proteome Res 13(12):5965–5972.  https://doi.org/10.1021/pr500854x CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Huebner AR, Cheng L, Somparn P, Knepper MA, Fenton RA, Pisitkun T (2016) Deubiquitylation of protein cargo is not an essential step in exosome formation. Mol Cell Proteomics 15(5):1556–1571.  https://doi.org/10.1074/mcp.M115.054965 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229.  https://doi.org/10.1146/annurev-biochem-060310-170328 CrossRefPubMedGoogle Scholar
  97. 97.
    Amerik AY, Nowak J, Swaminathan S, Hochstrasser M (2000) The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol Biol Cell 11(10):3365–3380.  https://doi.org/10.1091/mbc.11.10.3365 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    McCullough J, Clague MJ, Urbe S (2004) AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol 166(4):487–492.  https://doi.org/10.1083/jcb.200401141 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Agromayor M, Martin-Serrano J (2006) Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo. J Biol Chem 281(32):23083–23091.  https://doi.org/10.1074/jbc.M513803200 CrossRefPubMedGoogle Scholar
  100. 100.
    Mizuno E, Kobayashi K, Yamamoto A, Kitamura N, Komada M (2006) A deubiquitinating enzyme UBPY regulates the level of protein ubiquitination on endosomes. Traffic 7(8):1017–1031.  https://doi.org/10.1111/j.1600-0854.2006.00452.x CrossRefPubMedGoogle Scholar
  101. 101.
    van Niel G, Wubbolts R, Ten Broeke T, Buschow SI, Ossendorp FA, Melief CJ, Raposo G, van Balkom BW, Stoorvogel W (2006) Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity 25(6):885–894.  https://doi.org/10.1016/j.immuni.2006.11.001 CrossRefPubMedGoogle Scholar
  102. 102.
    Shin JS, Ebersold M, Pypaert M, Delamarre L, Hartley A, Mellman I (2006) Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature 444(7115):115–118.  https://doi.org/10.1038/nature05261 CrossRefPubMedGoogle Scholar
  103. 103.
    van Niel G, Wubbolts R, Stoorvogel W (2008) Endosomal sorting of MHC class II determines antigen presentation by dendritic cells. Curr Opin Cell Biol 20(4):437–444.  https://doi.org/10.1016/j.ceb.2008.05.011 CrossRefPubMedGoogle Scholar
  104. 104.
    Ohmura-Hoshino M, Goto E, Matsuki Y, Aoki M, Mito M, Uematsu M, Hotta H, Ishido S (2006) A novel family of membrane-bound E3 ubiquitin ligases. J Biochem 140(2):147–154.  https://doi.org/10.1093/jb/mvj160 CrossRefPubMedGoogle Scholar
  105. 105.
    Gauvreau ME, Cote MH, Bourgeois-Daigneault MC, Rivard LD, Xiu F, Brunet A, Shaw A, Steimle V, Thibodeau J (2009) Sorting of MHC class II molecules into exosomes through a ubiquitin-independent pathway. Traffic 10(10):1518–1527.  https://doi.org/10.1111/j.1600-0854.2009.00948.x CrossRefPubMedGoogle Scholar
  106. 106.
    Sarikas A, Hartmann T, Pan ZQ (2011) The cullin protein family. Genome Biol 12(4):220.  https://doi.org/10.1186/gb-2011-12-4-220 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6(1):9–20.  https://doi.org/10.1038/nrm1547 CrossRefPubMedGoogle Scholar
  108. 108.
    Keuss MJ, Hjerpe R, Hsia O, Gourlay R, Burchmore R, Trost M, Kurz T (2019) Unanchored tri-NEDD8 inhibits PARP-1 to protect from oxidative stress-induced cell death. EMBO J.  https://doi.org/10.15252/embj.2018100024 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, Lu Y, Liu P, Li Y, Wang S, Chai N, Wu J, Deng H, Wang HR, Cao Y, Zhao F, Cui Y, Wang J, He F, Zhang L (2014) The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun 5:3733.  https://doi.org/10.1038/ncomms4733 CrossRefPubMedGoogle Scholar
  110. 110.
    Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, Cullis CA, Doucette A, Garnsey JJ, Gaulin JL, Gershman RE, Lublinsky AR, McDonald A, Mizutani H, Narayanan U, Olhava EJ, Peluso S, Rezaei M, Sintchak MD, Talreja T, Thomas MP, Traore T, Vyskocil S, Weatherhead GS, Yu J, Zhang J, Dick LR, Claiborne CF, Rolfe M, Bolen JB, Langston SP (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458(7239):732–736.  https://doi.org/10.1038/nature07884 CrossRefPubMedGoogle Scholar
  111. 111.
    Ribet D, Cossart P (2018) Ubiquitin, SUMO, and NEDD8: key targets of bacterial pathogens. Trends Cell Biol 28(11):926–940.  https://doi.org/10.1016/j.tcb.2018.07.005 CrossRefPubMedGoogle Scholar
  112. 112.
    Cui J, Yao Q, Li S, Ding X, Lu Q, Mao H, Liu L, Zheng N, Chen S, Shao F (2010) Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329(5996):1215–1218.  https://doi.org/10.1126/science.1193844 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Yu C, Mao H, Novitsky EJ, Tang X, Rychnovsky SD, Zheng N, Huang L (2015) Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8. Nat Commun 6:10053.  https://doi.org/10.1038/ncomms10053 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Lu B, Al-Ramahi I, Valencia A, Wang Q, Berenshteyn F, Yang H, Gallego-Flores T, Ichcho S, Lacoste A, Hild M, Difiglia M, Botas J, Palacino J (2013) Identification of NUB1 as a suppressor of mutant Huntington toxicity via enhanced protein clearance. Nat Neurosci 16(5):562–570.  https://doi.org/10.1038/nn.3367 CrossRefPubMedGoogle Scholar
  115. 115.
    Feng Z (2010) p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol 2(2):a001057.  https://doi.org/10.1101/cshperspect.a001057 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Hock A, Vousden KH (2010) Regulation of the p53 pathway by ubiquitin and related proteins. Int J Biochem Cell Biol 42(10):1618–1621.  https://doi.org/10.1016/j.biocel.2010.06.011 CrossRefPubMedGoogle Scholar
  117. 117.
    Li T, Santockyte R, Yu S, Shen RF, Tekle E, Lee CG, Yang DC, Chock PB (2011) FAT10 modifies p53 and upregulates its transcriptional activity. Arch Biochem Biophys 509(2):164–169.  https://doi.org/10.1016/j.abb.2011.02.017 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Boddy MN, Howe K, Etkin LD, Solomon E, Freemont PS (1996) PIC 1, a novel ubiquitin- like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13(5):971–982PubMedGoogle Scholar
  119. 119.
    Okura T, Gong L, Kamitani T, Wada T, Okura I, Wei CF, Chang HM, Yeh ET (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 157(10):4277–4281PubMedGoogle Scholar
  120. 120.
    Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen DJ (1996) UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36(2):271–279.  https://doi.org/10.1006/geno.1996.0462 CrossRefPubMedGoogle Scholar
  121. 121.
    Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88(1):97–107CrossRefGoogle Scholar
  122. 122.
    Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106(31):13010–13015.  https://doi.org/10.1073/pnas.0903691106 CrossRefPubMedGoogle Scholar
  123. 123.
    Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K, Li JY, Brundin P (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121(2):715–725.  https://doi.org/10.1172/JCI43366 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953.  https://doi.org/10.1126/science.1227157 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium- dependent manner by exosomes and impacts neuronal survival. J Neurosci 30(20):6838–6851.  https://doi.org/10.1523/JNEUROSCI.5699-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Hasegawa T, Konno M, Baba T, Sugeno N, Kikuchi A, Kobayashi M, Miura E, Tanaka N, Tamai K, Furukawa K, Arai H, Mori F, Wakabayashi K, Aoki M, Itoyama Y, Takeda A (2011) The AAA-ATPase VPS4 regulates extracellular secretion and lysosomal targeting of alpha-synuclein. PLoS One 6(12):e29460.  https://doi.org/10.1371/journal.pone.0029460 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Lee HJ, Patel S, Lee SJ (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 25(25):6016–6024.  https://doi.org/10.1523/JNEUROSCI.0692-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao HH, Bossis G, Urlaub H, Zweckstetter M, Kugler S, Melchior F, Bahr M, Weishaupt JH (2011) Sumoylation inhibits alpha-synuclein aggregation and toxicity. J Cell Biol 194(1):49–60.  https://doi.org/10.1083/jcb.201010117 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Kunadt M, Eckermann K, Stuendl A, Gong J, Russo B, Strauss K, Rai S, Kugler S, Falomir Lockhart L, Schwalbe M, Krumova P, Oliveira LM, Bahr M, Mobius W, Levin J, Giese A, Kruse N, Mollenhauer B, Geiss-Friedlander R, Ludolph AC, Freischmidt A, Feiler MS, Danzer KM, Zweckstetter M, Jovin TM, Simons M, Weishaupt JH, Schneider A (2015) Extracellular vesicle sorting of alpha-Synuclein is regulated by sumoylation. Acta Neuropathol 129(5):695–713.  https://doi.org/10.1007/s00401-015-1408-1 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sanchez- Madrid F (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980.  https://doi.org/10.1038/ncomms3980 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Denuc A, Marfany G (2010) SUMO and ubiquitin paths converge. Biochem Soc Trans 38(Pt 1):34–39.  https://doi.org/10.1042/BST0380034 CrossRefPubMedGoogle Scholar
  132. 132.
    Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2(2):233–239CrossRefGoogle Scholar
  133. 133.
    Geoffroy MC, Hay RT (2009) An additional role for SUMO in ubiquitin-mediated proteolysis. Nat Rev Mol Cell Biol 10(8):564–568.  https://doi.org/10.1038/nrm2707 CrossRefPubMedGoogle Scholar
  134. 134.
    Hendriks IA, D’Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC (2014) Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 21(10):927–936.  https://doi.org/10.1038/nsmb.2890 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Guzzo CM, Berndsen CE, Zhu J, Gupta V, Datta A, Greenberg RA, Wolberger C, Matunis MJ (2012) RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci Signal 5(253):ra88.  https://doi.org/10.1126/scisignal.2003485 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Farrell PJ, Broeze RJ, Lengyel P (1979) Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature 279(5713):523–525CrossRefGoogle Scholar
  137. 137.
    Okumura A, Lu G, Pitha-Rowe I, Pitha PM (2006) Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci USA 103(5):1440–1445.  https://doi.org/10.1073/pnas.0510518103 CrossRefPubMedGoogle Scholar
  138. 138.
    Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernandez-Delgado I, Torralba D, Moreno- Gonzalo O, Baldanta S, Enrich C, Guerra S, Sanchez-Madrid F (2016) ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun 7:13588.  https://doi.org/10.1038/ncomms13588 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333(1–2):169–174CrossRefGoogle Scholar
  140. 140.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42.  https://doi.org/10.1016/j.cell.2007.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075.  https://doi.org/10.1038/nature06639 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662.  https://doi.org/10.1056/NEJMra1205406 CrossRefGoogle Scholar
  143. 143.
    Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873.  https://doi.org/10.1101/gad.1599207 CrossRefPubMedGoogle Scholar
  144. 144.
    Komatsu M, Ichimura Y (2010) Selective autophagy regulates various cellular functions. Genes Cells 15(9):923–933.  https://doi.org/10.1111/j.1365-2443.2010.01433.x CrossRefPubMedGoogle Scholar
  145. 145.
    Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395–398.  https://doi.org/10.1038/26506 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E (1999) Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10(5):1367–1379.  https://doi.org/10.1091/mbc.10.5.1367 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Nemoto T, Tanida I, Tanida-Miyake E, Minematsu-Ikeguchi N, Yokota M, Ohsumi M, Ueno T, Kominami E (2003) The mouse APG10 homologue, an E2-like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification. J Biol Chem 278(41):39517–39526.  https://doi.org/10.1074/jbc.C200334200 CrossRefPubMedGoogle Scholar
  148. 148.
    Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C, Debnath J (2010) ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142(4):590–600.  https://doi.org/10.1016/j.cell.2010.07.018 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Murrow L, Malhotra R, Debnath J (2015) ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol 17(3):300–310.  https://doi.org/10.1038/ncb3112 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Katoh K, Shibata H, Suzuki H, Nara A, Ishidoh K, Kominami E, Yoshimori T, Maki M (2003) The ALG-2-interacting protein Alix associates with CHMP4b, a human homologue of yeast Snf7 that is involved in multivesicular body sorting. J Biol Chem 278(40):39104–39113.  https://doi.org/10.1074/jbc.M301604200 CrossRefPubMedGoogle Scholar
  151. 151.
    Matsuo H, Chevallier J, Mayran N, Le Blanc I, Ferguson C, Faure J, Blanc NS, Matile S, Dubochet J, Sadoul R, Parton RG, Vilbois F, Gruenberg J (2004) Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303(5657):531–534.  https://doi.org/10.1126/science.1092425 CrossRefPubMedGoogle Scholar
  152. 152.
    Segura-Morales C, Pescia C, Chatellard-Causse C, Sadoul R, Bertrand E, Basyuk E (2005) Tsg101 and Alix interact with murine leukemia virus Gag and cooperate with Nedd4 ubiquitin ligases during budding. J Biol Chem 280(29):27004–27012.  https://doi.org/10.1074/jbc.M413735200 CrossRefPubMedGoogle Scholar
  153. 153.
    Strack B, Calistri A, Craig S, Popova E, Gottlinger HG (2003) AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114(6):689–699CrossRefGoogle Scholar
  154. 154.
    Prusiner SB, Groth DF, Bolton DC, Kent SB, Hood LE (1984) Purification and structural studies of a major scrapie prion protein. Cell 38(1):127–134CrossRefGoogle Scholar
  155. 155.
    Dias MV, Teixeira BL, Rodrigues BR, Sinigaglia-Coimbra R, Porto-Carreiro I, Roffe M, Hajj GN, Martins VR (2016) PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy. Autophagy 12(11):2113–2128.  https://doi.org/10.1080/15548627.2016.1226735 CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Chen ZH, Cao JF, Zhou JS, Liu H, Che LQ, Mizumura K, Li W, Choi AM, Shen HH (2014) Interaction of caveolin-1 with ATG12-ATG5 system suppresses autophagy in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 306(11):L1016–L1025.  https://doi.org/10.1152/ajplung.00268.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O (2000) Signal transduction through prion protein. Science 289(5486):1925–1928CrossRefGoogle Scholar
  158. 158.
    Shi Q, Jing YY, Wang SB, Chen C, Sun H, Xu Y, Gao C, Zhang J, Tian C, Guo Y, Ren K, Dong XP (2013) PrP octarepeats region determined the interaction with caveolin-1 and phosphorylation of caveolin-1 and Fyn. Med Microbiol Immunol 202(3):215–227.  https://doi.org/10.1007/s00430-012-0284-8 CrossRefPubMedGoogle Scholar
  159. 159.
    Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269.  https://doi.org/10.1016/j.molcel.2009.04.026 CrossRefPubMedGoogle Scholar
  160. 160.
    Chang CW, Cheng WC, Chen CR, Shu WY, Tsai ML, Huang CL, Hsu IC (2011) Identification of human housekeeping genes and tissue-selective genes by microarray meta- analysis. PLoS One 6(7):e22859.  https://doi.org/10.1371/journal.pone.0022859 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Huang L, Zheng M, Zhou QM, Zhang MY, Yu YH, Yun JP, Wang HY (2012) Identification of a 7-gene signature that predicts relapse and survival for early stage patients with cervical carcinoma. Med Oncol 29(4):2911–2918.  https://doi.org/10.1007/s12032-012-0166-3 CrossRefPubMedGoogle Scholar
  162. 162.
    Lee JY, Kim J, Kim SW, Park SK, Ahn SH, Lee MH, Suh YJ, Noh DY, Son BH, Cho YU, Lee SB, Lee JW, Hopper JL, Sung J (2018) BRCA1/2-negative, high-risk breast cancers (BRCAX) for Asian women: genetic susceptibility loci and their potential impacts. Sci Rep 8(1):15263.  https://doi.org/10.1038/s41598-018-31859-8 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Downes BP, Saracco SA, Lee SS, Crowell DN, Vierstra RD (2006) MUBs, a family of ubiquitin-fold proteins that are plasma membrane-anchored by prenylation. J Biol Chem 281(37):27145–27157.  https://doi.org/10.1074/jbc.M602283200 CrossRefPubMedGoogle Scholar
  164. 164.
    Dowil RT, Lu X, Saracco SA, Vierstra RD, Downes BP (2011) Arabidopsis membrane- anchored ubiquitin-fold (MUB) proteins localize a specific subset of ubiquitin-conjugating (E2) enzymes to the plasma membrane. J Biol Chem 286(17):14913–14921.  https://doi.org/10.1074/jbc.M110.158808 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Lu X, Malley KR, Brenner CC, Koroleva O, Korolev S, Downes BP (2016) A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2 s in eukaryotes. Nat Commun 7:12580.  https://doi.org/10.1038/ncomms12580 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385.  https://doi.org/10.1146/annurev-biochem-061909-093311 CrossRefPubMedGoogle Scholar
  167. 167.
    Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258 (13):8206-8214Google Scholar
  168. 168.
    Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135(6 Pt 1):1457–1470CrossRefGoogle Scholar
  169. 169.
    Kamitani T, Kito K, Nguyen HP, Yeh ET (1997) Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem 272(45):28557–28562CrossRefGoogle Scholar
  170. 170.
    Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20(2):363–379.  https://doi.org/10.1681/ASN.2008040406 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ (2013) Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics 12(2):343–355.  https://doi.org/10.1074/mcp.M112.022806 CrossRefPubMedGoogle Scholar
  172. 172.
    Hipp MS, Kalveram B, Raasi S, Groettrup M, Schmidtke G (2005) FAT10, a ubiquitin- independent signal for proteasomal degradation. Mol Cell Biol 25(9):3483–3491.  https://doi.org/10.1128/MCB.25.9.3483-3491.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Schmidtke G, Kalveram B, Groettrup M (2009) Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett 583(3):591–594.  https://doi.org/10.1016/j.febslet.2009.01.006 CrossRefPubMedGoogle Scholar
  174. 174.
    Raasi S, Schmidtke G, Groettrup M (2001) The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis. J Biol Chem 276(38):35334–35343.  https://doi.org/10.1074/jbc.M105139200 CrossRefPubMedGoogle Scholar
  175. 175.
    Aichem A, Pelzer C, Lukasiak S, Kalveram B, Sheppard PW, Rani N, Schmidtke G, Groettrup M (2010) USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10, which FAT10ylates itself in cis. Nat Commun 1:13.  https://doi.org/10.1038/ncomms1012 CrossRefPubMedGoogle Scholar
  176. 176.
    Canaan A, Yu X, Booth CJ, Lian J, Lazar I, Gamfi SL, Castille K, Kohya N, Nakayama Y, Liu YC, Eynon E, Flavell R, Weissman SM (2006) FAT10/diubiquitin-like protein-deficient mice exhibit minimal phenotypic differences. Mol Cell Biol 26(13):5180–5189.  https://doi.org/10.1128/MCB.00966-05 CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Kuo WP, Tigges JC, Toxavidis V, Ghiran I (2017) Red blood cells: a source of extracellular vesicles. Methods Mol Biol 1660:15–22.  https://doi.org/10.1007/978-1-4939-7253-1_2 CrossRefPubMedGoogle Scholar
  178. 178.
    Komatsu M, Chiba T, Tatsumi K, Iemura S, Tanida I, Okazaki N, Ueno T, Kominami E, Natsume T, Tanaka K (2004) A novel protein-conjugating system for Ufm1, a ubiquitin- fold modifier. EMBO J 23(9):1977–1986.  https://doi.org/10.1038/sj.emboj.7600205 CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Tatsumi K, Sou YS, Tada N, Nakamura E, Iemura S, Natsume T, Kang SH, Chung CH, Kasahara M, Kominami E, Yamamoto M, Tanaka K, Komatsu M (2010) A novel type of E3 ligase for the Ufm1 conjugation system. J Biol Chem 285(8):5417–5427.  https://doi.org/10.1074/jbc.M109.036814 CrossRefPubMedGoogle Scholar
  180. 180.
    Tatsumi K, Yamamoto-Mukai H, Shimizu R, Waguri S, Sou YS, Sakamoto A, Taya C, Shitara H, Hara T, Chung CH, Tanaka K, Yamamoto M, Komatsu M (2011) The Ufm1- activating enzyme Uba5 is indispensable for erythroid differentiation in mice. Nat Commun 2:181.  https://doi.org/10.1038/ncomms1182 CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Goetzl EJ, Goetzl L, Karliner JS, Tang N, Pulliam L (2016) Human plasma platelet-derived exosomes: effects of aspirin. FASEB J 30(5):2058–2063.  https://doi.org/10.1096/fj.201500150R CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Armstrong D, Wildman DE (2018) Extracellular vesicles and the promise of continuous liquid biopsies. J Pathol Transl Med 52(1):1–8.  https://doi.org/10.4132/jptm.2017.05.21 CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Nahorski MS, Maddirevula S, Ishimura R, Alsahli S, Brady AF, Begemann A, Mizushima T, Guzman-Vega FJ, Obata M, Ichimura Y, Alsaif HS, Anazi S, Ibrahim N, Abdulwahab F, Hashem M, Monies D, Abouelhoda M, Meyer BF, Alfadhel M, Eyaid W, Zweier M, Steindl K, Rauch A, Arold ST, Woods CG, Komatsu M, Alkuraya FS (2018) Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development. Brain 141(7):1934–1945.  https://doi.org/10.1093/brain/awy135 CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Leidel S, Pedrioli PG, Bucher T, Brost R, Costanzo M, Schmidt A, Aebersold R, Boone C, Hofmann K, Peter M (2009) Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458(7235):228–232.  https://doi.org/10.1038/nature07643 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Van der Veen AG, Schorpp K, Schlieker C, Buti L, Damon JR, Spooner E, Ploegh HL, Jentsch S (2011) Role of the ubiquitin-like protein Urm1 as a noncanonical lysine-directed protein modifier. Proc Natl Acad Sci USA 108(5):1763–1770.  https://doi.org/10.1073/pnas.1014402108 CrossRefPubMedGoogle Scholar
  186. 186.
    Goehring AS, Rivers DM, Sprague GF Jr (2003) Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahp1p. Eukaryot Cell 2(5):930–936.  https://doi.org/10.1128/ec.2.5.930-936.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Abramowicz A, Widlak P, Pietrowska M (2019) Different types of cellular stress affect the proteome composition of small extracellular vesicles: a mini review. Proteomes.  https://doi.org/10.3390/proteomes7020023 CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Yashiroda H, Tanaka K (2004) Hub1 is an essential ubiquitin-like protein without functioning as a typical modifier in fission yeast. Genes Cells 9(12):1189–1197.  https://doi.org/10.1111/j.1365-2443.2004.00807.x CrossRefPubMedGoogle Scholar
  189. 189.
    Luders J, Pyrowolakis G, Jentsch S (2003) The ubiquitin-like protein HUB1 forms SDS- resistant complexes with cellular proteins in the absence of ATP. EMBO Rep 4(12):1169–1174.  https://doi.org/10.1038/sj.embor.7400025 CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Mishra SK, Ammon T, Popowicz GM, Krajewski M, Nagel RJ, Ares M Jr, Holak TA, Jentsch S (2011) Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature 474(7350):173–178.  https://doi.org/10.1038/nature10143 CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Haynes CM, Ron D (2010) The mitochondrial UPR—protecting organelle protein homeostasis. J Cell Sci 123(Pt 22):3849–3855.  https://doi.org/10.1242/jcs.075119 CrossRefPubMedGoogle Scholar
  192. 192.
    Benedetti C, Haynes CM, Yang Y, Harding HP, Ron D (2006) Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174(1):229–239.  https://doi.org/10.1534/genetics.106.061580 CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Oka Y, Bekker-Jensen S, Mailand N (2015) Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway. EMBO J 34(10):1385–1398.  https://doi.org/10.15252/embj.201490376 CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Nakamura M, Shimosaki S (2009) The ubiquitin-like protein monoclonal nonspecific suppressor factor beta conjugates to endophilin II and regulates phagocytosis. FEBS J 276(21):6355–6363.  https://doi.org/10.1111/j.1742-4658.2009.07348.x CrossRefPubMedGoogle Scholar
  195. 195.
    Nakamura M, Tanigawa Y (2000) Protein tyrosine phosphorylation induced by ubiquitin- like polypeptide in murine T helper clone type 2. Biochem Biophys Res Commun 274(2):565–570.  https://doi.org/10.1006/bbrc.2000.3179 CrossRefPubMedGoogle Scholar
  196. 196.
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708.  https://doi.org/10.1126/science.1065874 CrossRefPubMedGoogle Scholar
  197. 197.
    Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412CrossRefGoogle Scholar
  198. 198.
    Hitachi K, Tsuchida K (2013) Role of microRNAs in skeletal muscle hypertrophy. Front Physiol 4:408.  https://doi.org/10.3389/fphys.2013.00408 CrossRefPubMedGoogle Scholar
  199. 199.
    Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle- specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98(25):14440–14445.  https://doi.org/10.1073/pnas.251541198 CrossRefPubMedGoogle Scholar
  200. 200.
    Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471.  https://doi.org/10.1016/j.cmet.2007.11.001 CrossRefPubMedGoogle Scholar
  201. 201.
    Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483.  https://doi.org/10.1016/j.cmet.2007.11.004 CrossRefPubMedGoogle Scholar
  202. 202.
    Han HQ, Zhou X, Mitch WE, Goldberg AL (2013) Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int J Biochem Cell Biol 45(10):2333–2347.  https://doi.org/10.1016/j.biocel.2013.05.019 CrossRefPubMedGoogle Scholar
  203. 203.
    Mund T, Masuda-Suzukake M, Goedert M, Pelham HR (2018) Ubiquitination of alpha- synuclein filaments by Nedd4 ligases. PLoS One 13(7):e0200763.  https://doi.org/10.1371/journal.pone.0200763 CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Rott R, Szargel R, Shani V, Hamza H, Savyon M, Abd Elghani F, Bandopadhyay R, Engelender S (2017) SUMOylation and ubiquitination reciprocally regulate alpha-synuclein degradation and pathological aggregation. Proc Natl Acad Sci USA 114(50):13176–13181.  https://doi.org/10.1073/pnas.1704351114 CrossRefPubMedGoogle Scholar
  205. 205.
    Zhang Y, Chen X, Zhao Y, Ponnusamy M, Liu Y (2017) The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease. Rev Neurosci 28(8):861–868.  https://doi.org/10.1515/revneuro-2017-0013 CrossRefGoogle Scholar
  206. 206.
    Geser F, Lee VM, Trojanowski JQ (2010) Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 30(2):103–112.  https://doi.org/10.1111/j.1440-1789.2009.01091.x CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T (2006) TDP-43 is a component of ubiquitin-positive tau- negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611.  https://doi.org/10.1016/j.bbrc.2006.10.093 CrossRefPubMedGoogle Scholar
  208. 208.
    Vogler TO, Wheeler JR, Nguyen ED, Hughes MP, Britson KA, Lester E, Rao B, Betta ND, Whitney ON, Ewachiw TE, Gomes E, Shorter J, Lloyd TE, Eisenberg DS, Taylor JP, Johnson AM, Olwin BB, Parker R (2018) TDP-43 and RNA form amyloid-like myo- granules in regenerating muscle. Nature 563(7732):508–513.  https://doi.org/10.1038/s41586-018-0665-2 CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Opattova A, Cente M, Novak M, Filipcik P (2015) The ubiquitin proteasome system as a potential therapeutic target for treatment of neurodegenerative diseases. Gen Physiol Biophys 34(4):337–352.  https://doi.org/10.4149/gpb_2015024 CrossRefPubMedGoogle Scholar
  210. 210.
    Marcelli S, Corbo M, Iannuzzi F, Negri L, Blandini F, Nistico R, Feligioni M (2018) The involvement of post-translational modifications in Alzheimer’s disease. Curr Alzheimer Res 15(4):313–335.  https://doi.org/10.2174/1567205014666170505095109 CrossRefPubMedGoogle Scholar
  211. 211.
    Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DM, Akiyama H, Hasegawa M (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4(1):124–134.  https://doi.org/10.1016/j.celrep.2013.06.007 CrossRefPubMedGoogle Scholar
  212. 212.
    Iguchi Y, Eid L, Parent M, Soucy G, Bareil C, Riku Y, Kawai K, Takagi S, Yoshida M, Katsuno M, Sobue G, Julien JP (2016) Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139(Pt 12):3187–3201.  https://doi.org/10.1093/brain/aww237 CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Gatica D, Lahiri V, Klionsky DJ (2018) Cargo recognition and degradation by selective autophagy. Nat Cell Biol 20(3):233–242.  https://doi.org/10.1038/s41556-018-0037-z CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan

Personalised recommendations