Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 22, pp 4503–4510 | Cite as

Cell-surface molecule-mediated cell–cell interactions in the regulation of ILC2-driven allergic inflammation

  • Aihua Lei
  • Jie ZhouEmail author
Review

Abstract

Group 2 innate lymphoid cells (ILC2s) are a subset of innate immune cells that do not express antigen receptors. ILC2-mediated type 2 responses, which are mainly characterized by the production of interleukin (IL)-5 and IL-13, play key roles in inducing inflammation, protecting against infection, and maintaining tissue homeostasis. Although recent years have largely enhanced our understanding of the transcriptional networks and soluble mediators that regulate ILC2 development or function, emerging evidence suggests that ILC2s express a variety of cell-surface molecules and interact with themselves or other immune cells. These cell–cell interactions are essential in the modulation of ILC2 number and their type 2 cytokine production during ILC2-driven allergic inflammation. In this review, we summarize the extensive array of cell-surface molecules on ILC2s that mediate cell–cell interactions and their role in regulating ILC2 generation or function in the context of ILC2-induced allergic inflammation.

Keywords

ILC2 Cell-surface molecules Allergic inflammation 

Notes

Acknowledgements

This work was supported by the following grants to J. Zhou: National Natural Science Foundation of China (Nos. 91542112; 81571520; 81771665; 81742002), Start-up Fund for High-level Talents of Tianjin Medical University, Science and Technology Program of Guangzhou (No. 201707010452), Natural Science Foundation of Guangdong Province (No. 2017B030311014). It was also supported by National Natural Science Foundation of China (No. 81800031 to A. Lei), Natural Science Foundation of Guangdong Province (No. 2018A030313648 to A. Lei) and Research Foundation of Education Bureau of Human Province, China (No. 18C0458).

Compliance with ethical standards

Conflict of interest

The authors have no financial conflict of interest.

References

  1. 1.
    Zhou L (2012) Striking similarity: GATA-3 regulates ILC2 and Th2 cells. Immunity 37(4):589–591PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Licona-Limon P, Kim LK, Palm NW, Flavell RA (2013) TH2, allergy and group 2 innate lymphoid cells. Nat Immunol 14(6):536–542PubMedCrossRefGoogle Scholar
  3. 3.
    Klose CS, Artis D (2016) Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 17(7):765–774PubMedCrossRefGoogle Scholar
  4. 4.
    Schuijs MJ, Halim TYF (2018) Group 2 innate lymphocytes at the interface between innate and adaptive immunity. Ann N Y Acad Sci 1417(1):87–103PubMedCrossRefGoogle Scholar
  5. 5.
    Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463(7280):540–544PubMedCrossRefGoogle Scholar
  6. 6.
    Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie AN (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464(7293):1367–1370PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, Locksley RM (2010) Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA 107(25):11489–11494PubMedCrossRefGoogle Scholar
  8. 8.
    Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY (2015) Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350(6263):981–985PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Moro K, Kabata H, Tanabe M, Koga S, Takeno N, Mochizuki M, Fukunaga K, Asano K, Betsuyaku T, Koyasu S (2016) Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat Immunol 17(1):76–86PubMedCrossRefGoogle Scholar
  10. 10.
    Karta MR, Rosenthal PS, Beppu A, Vuong CY, Miller M, Das S, Kurten RC, Doherty TA, Broide DH (2018) β2 integrins rather than β1 integrins mediate Alternaria-induced group 2 innate lymphoid cell trafficking to the lung. J Allergy Clin Immunol 141(1):329–338PubMedCrossRefGoogle Scholar
  11. 11.
    Koga S, Hozumi K, Hirano KI, Yazawa M, Terooatea T, Minoda A, Nagasawa T, Koyasu S, Moro K (2018) Peripheral PDGFRα(+)gp38(+) mesenchymal cells support the differentiation of fetal liver-derived ILC2. J Exp Med 215(6):1609–1626PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Serafini N, Vosshenrich CA, Di Santo JP (2015) Transcriptional regulation of innate lymphoid cell fate. Nat Rev Immunol 15(7):415–428PubMedCrossRefGoogle Scholar
  13. 13.
    Yang Q, Li F, Harly C, Xing S, Ye L, Xia X, Wang H, Wang X, Yu S, Zhou X, Cam M, Xue HH, Bhandoola A (2015) TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat Immunol 16(10):1044–1050PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hurrell BP, Jahani PS, Akbari O (2018) Social networking of group two innate lymphoid cells in allergy and asthma. Front immunol 9:2694PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kabata H, Moro K, Koyasu S (2018) The group 2 innate lymphoid cell (ILC 2) regulatory network and its underlying mechanisms. Immunol Rev 286(1):37–52PubMedCrossRefGoogle Scholar
  16. 16.
    Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST, McKenzie AN, Fallon PG, Ogg GS (2013) A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 210(13):2939–2950PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ealey KN, Moro K, Koyasu S (2017) Are ILC2s Jekyll and Hyde in airway inflammation? Immunol Rev 278(1):207–218PubMedCrossRefGoogle Scholar
  18. 18.
    Stanciu LA, Djukanovic R (1998) The role of ICAM-1 on T-cells in the pathogenesis of asthma. Eur Respir J 11(4):949–957PubMedCrossRefGoogle Scholar
  19. 19.
    Van Seventer GA, Shimizu Y, Horgan KJ, Shaw S (1990) The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol 144(12):4579–4586PubMedGoogle Scholar
  20. 20.
    Xu H, Guan H, Zu G, Bullard D, Hanson J, Slater M, Elmets CA (2001) The role of ICAM-1 molecule in the migration of Langerhans cells in the skin and regional lymph node. Eur J Immunol 31(10):3085–3093PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mukhopadhyay S, Malik P, Arora SK, Mukherjee TK (2014) Intercellular adhesion molecule-1 as a drug target in asthma and rhinitis. Respirology 19(4):508–513PubMedCrossRefGoogle Scholar
  22. 22.
    Grunstein MM, Hakonarson H, Maskeri N, Kim C, Chuang S (2000) Intrinsic ICAM-1/LFA-1 activation mediates altered responsiveness of atopic asthmatic airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 278(6):L1154–L1163PubMedCrossRefGoogle Scholar
  23. 23.
    Lei AH, Xiao Q, Liu GY, Shi K, Yang Q, Li X, Liu YF, Wang HK, Cai WP, Guan YJ, Gabrilovich DI, Zhou J (2018) ICAM-1 controls development and function of ILC2. J Exp Med 215(8):2157–2174PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Huang Y, Mao K, Chen X, Sun MA, Kawabe T, Li W, Usher N, Zhu J, Urban JF Jr, Paul WE, Germain RN (2018) S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359(6371):114–119PubMedCrossRefGoogle Scholar
  25. 25.
    Meli AP, Fontes G, Avery DT, Leddon SA, Tam M, Elliot M, Ballesteros-Tato A, Miller J, Stevenson MM, Fowell DJ, Tangye SG, King IL (2016) The Integrin LFA-1 controls T follicular helper cell generation and maintenance. Immunity 45(4):831–846PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Salomon B, Bluestone JA (1998) LFA-1 interaction with ICAM-1 and ICAM-2 regulates Th2 cytokine production. J Immunol 161(10):5138–5142PubMedGoogle Scholar
  27. 27.
    Jenks SA, Eisfelder BJ, Miller J (2005) LFA-1 co-stimulation inhibits T(h)2 differentiation by down-modulating IL-4 responsiveness. Int Immunol 17(3):315–323PubMedCrossRefGoogle Scholar
  28. 28.
    Wikenheiser DJ, Stumhofer JS (2016) ICOS co-stimulation: friend or foe? Front Immunol 7:304PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gonzalo JA, Tian J, Delaney T, Corcoran J, Rottman JB, Lora J, Al-garawi A, Kroczek R, Gutierrez-Ramos JC, Coyle AJ (2001) ICOS is critical for T helper cell-mediated lung mucosal inflammatory responses. Nat Immunol 2(7):597–604PubMedCrossRefGoogle Scholar
  30. 30.
    McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK, Ling V, Collins M, Sharpe AH, Freeman GJ (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165(9):5035–5040PubMedCrossRefGoogle Scholar
  31. 31.
    Nurieva RI, Duong J, Kishikawa H, Dianzani U, Rojo JM, Ho I, Flavell RA, Dong C (2003) Transcriptional regulation of th2 differentiation by inducible costimulator. Immunity 18(6):801–811PubMedCrossRefGoogle Scholar
  32. 32.
    Maazi H, Patel N, Sankaranarayanan I, Suzuki Y, Rigas D, Soroosh P, Freeman GJ, Sharpe AH, Akbari O (2015) ICOS: ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity 42(3):538–551PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S (2015) ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun 463(4):739–745PubMedCrossRefGoogle Scholar
  34. 34.
    Paclik D, Stehle C, Lahmann A, Hutloff A, Romagnani C (2015) ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice. Eur J Immunol 45(10):2766–2772PubMedCrossRefGoogle Scholar
  35. 35.
    Hubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H (2013) Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunol 4:82PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gao X, Zhao L, Wang S, Yang J, Yang X (2013) Enhanced inducible costimulator ligand (ICOS-L) expression on dendritic cells in interleukin-10 deficiency and its impact on T cell subsets in respiratory tract infection. Mol Med 19:346–356PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Croft M (2003) Co-stimulatory members of the TNFR family: keys to effective T cell immunity? Nat Rev Immunol 3(8):609–620PubMedCrossRefGoogle Scholar
  38. 38.
    Ward-Kavanagh LK, Lin WW, Sedy JR, Ware CF (2016) The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity 44(5):1005–1019PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Redmond WL, Linch SN, Kasiewicz MJ (2014) Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity. Cancer Immunol Res 2(2):142–153PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3(9):745–756PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Croft M (2010) Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol 28:57–78PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jenkins SJ, Perona-Wright G, Worsley AG, Ishii N, MacDonald AS (2007) Dendritic cell expression of OX40 ligand acts as a costimulatory, not polarizing, signal for optimal Th2 priming and memory induction in vivo. J Immunol 179(6):3515–3523PubMedCrossRefGoogle Scholar
  43. 43.
    Halim TYF, Rana BMJ, Walker JA, Kerscher B, Knolle MD, Jolin HE, Serrao EM, Haim-Vilmovsky L, Teichmann SA, Rodewald HR, Botto M, Vyse TJ, Fallon PG, Li Z, Withers DR, McKenzie ANJ (2018) Tissue-restricted adaptive type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on group 2 innate lymphoid cells. Immunity 48(6):1195–1207PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH (2013) Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 132(1):205–213PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Halim TY, Steer CA, Matha L, Gold MJ, Martinez-Gonzalez I, McNagny KM, McKenzie AN, Takei F (2014) Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40(3):425–435PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mirchandani AS, Besnard AG, Yip E, Scott C, Bain CC, Cerovic V, Salmond RJ, Liew FY (2014) Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. J Immunol 192(5):2442–2448PubMedCrossRefGoogle Scholar
  47. 47.
    Liu B, Lee JB, Chen CY, Hershey GK, Wang YH (2015) Collaborative interactions between type 2 innate lymphoid cells and antigen-specific CD4+ Th2 cells exacerbate murine allergic airway diseases with prominent eosinophilia. J Immunol 194(8):3583–3593PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Li BW, de Bruijn MJ, Tindemans I, Lukkes M, KleinJan A, Hoogsteden HC, Hendriks RW (2016) T cells are necessary for ILC2 activation in house dust mite-induced allergic airway inflammation in mice. Eur J Immunol 46(6):1392–1403PubMedCrossRefGoogle Scholar
  49. 49.
    Meylan F, Hawley ET, Barron L, Barlow JL, Penumetcha P, Pelletier M, Sciume G, Richard AC, Hayes ET, Gomez-Rodriguez J, Chen X, Paul WE, Wynn TA, McKenzie AN, Siegel RM (2014) The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunol 7(4):958–968PubMedCrossRefGoogle Scholar
  50. 50.
    Yu X, Pappu R, Ramirez-Carrozzi V, Ota N, Caplazi P, Zhang J, Yan D, Xu M, Lee WP, Grogan JL (2014) TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol 7(3):730–740PubMedCrossRefGoogle Scholar
  51. 51.
    Meylan F, Davidson TS, Kahle E, Kinder M, Acharya K, Jankovic D, Bundoc V, Hodges M, Shevach EM, Keane-Myers A, Wang EC, Siegel RM (2008) The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity 29(1):79–89PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Malhotra N, Leyva-Castillo JM, Jadhav U, Barreiro O, Kam C, O’Neill NK, Meylan F, Chambon P, von Andrian UH, Siegel RM, Wang EC, Shivdasani R, Geha RS (2018) RORα-expressing T regulatory cells restrain allergic skin inflammation. Sci Immunol 3:21CrossRefGoogle Scholar
  53. 53.
    Nocentini G, Riccardi C (2005) GITR: a multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol 35(4):1016–1022PubMedCrossRefGoogle Scholar
  54. 54.
    Nagashima H, Okuyama Y, Fujita T, Takeda T, Motomura Y, Moro K, Hidaka T, Omori K, Sakurai T, Machiyama T, Ndhlovu LC, Riccardi C, So T, Ishii N (2018) GITR cosignal in ILC2s controls allergic lung inflammation. J Allergy Clin Immunol 141(5):1939–1943PubMedCrossRefGoogle Scholar
  55. 55.
    Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, Bottino C, Moretta L, Moretta A (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 190(10):1505–1516PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hollyoake M, Campbell RD, Aguado B (2005) NKp30 (NCR3) is a pseudogene in 12 inbred and wild mouse strains, but an expressed gene in Mus caroli. Mol Biol Evol 22(8):1661–1672PubMedCrossRefGoogle Scholar
  57. 57.
    Salimi M, Xue L, Jolin H, Hardman C, Cousins DJ, McKenzie AN, Ogg GS (2016) Group 2 innate lymphoid cells express functional NKp30 receptor inducing type 2 cytokine production. J Immunol 196(1):45–54PubMedCrossRefGoogle Scholar
  58. 58.
    Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, Englezakis A, Barlow JL, Hams E, Scanlon ST, Ogg GS, Fallon PG, McKenzie AN (2014) MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41(2):283–295PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Robbins SH, Nguyen KB, Takahashi N, Mikayama T, Biron CA, Brossay L (2002) Cutting edge: inhibitory functions of the killer cell lectin-like receptor G1 molecule during the activation of mouse NK cells. J Immunol 168(6):2585–2589PubMedCrossRefGoogle Scholar
  60. 60.
    Voehringer D, Koschella M, Pircher H (2002) Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood 100(10):3698–3702PubMedCrossRefGoogle Scholar
  61. 61.
    Rosshart S, Hofmann M, Schweier O, Pfaff AK, Yoshimoto K, Takeuchi T, Molnar E, Schamel WW, Pircher H (2008) Interaction of KLRG1 with E-cadherin: new functional and structural insights. Eur J Immunol 38(12):3354–3364PubMedCrossRefGoogle Scholar
  62. 62.
    Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37(4):634–648PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Masuyama K, Morishima Y, Ishii Y, Nomura A, Sakamoto T, Kimura T, Mochizuki M, Uchida Y, Sekizawa K (2003) Sputum E-cadherin and asthma severity. J Allergy Clin Immunol 112(1):208–209PubMedCrossRefGoogle Scholar
  64. 64.
    Laffont S, Blanquart E, Savignac M, Cenac C, Laverny G, Metzger D, Girard JP, Belz GT, Pelletier L, Seillet C, Guery JC (2017) Androgen signaling negatively controls group 2 innate lymphoid cells. J Exp Med 214(6):1581–1592PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kadel S, Ainsua-Enrich E, Hatipoglu I, Turner S, Singh S, Khan S, Kovats S (2018) A major population of functional KLRG1(-) ILC2s in female lungs contributes to a sex bias in ILC2 numbers. Immunohorizons 2(2):74–86PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cephus JY, Stier MT, Fuseini H, Yung JA, Toki S, Bloodworth MH, Zhou W, Goleniewska K, Zhang J, Garon SL, Hamilton RG, Poloshukin VV, Boyd KL, Peebles RS Jr, Newcomb DC (2017) Testosterone attenuates group 2 Innate lymphoid cell-mediated airway inflammation. Cell Rep 21(9):2487–2499PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Warren KJ, Sweeter JM, Pavlik JA, Nelson AJ, Devasure JM, Dickinson JD, Sisson JH, Wyatt TA, Poole JA (2017) Sex differences in activation of lung-related type 2 innate lymphoid cells in experimental asthma. Ann Allergy Asthma Immunol 118(2):233–234PubMedCrossRefGoogle Scholar
  68. 68.
    Akbari O, Freeman GJ, Meyer EH, Greenfield EA, Chang TT, Sharpe AH, Berry G, DeKruyff RH, Umetsu DT (2002) Antigen-specific regulatory T cells develop via the ICOS–ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 8(9):1024–1032PubMedCrossRefGoogle Scholar
  69. 69.
    Rigas D, Lewis G, Aron JL, Wang B, Banie H, Sankaranarayanan I, Galle-Treger L, Maazi H, Lo R, Freeman GJ, Sharpe AH, Soroosh P, Akbari O (2017) Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T cell costimulator–inducible T cell costimulator ligand interaction. J Allergy Clin Immunol 139(5):1468–1477PubMedCrossRefGoogle Scholar
  70. 70.
    Aron JL, Akbari O (2017) Regulatory T cells and type 2 innate lymphoid cell-dependent asthma. Allergy 72(8):1148–1155PubMedCrossRefGoogle Scholar
  71. 71.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704PubMedCrossRefGoogle Scholar
  72. 72.
    Chamoto K, Al-Habsi M, Honjo T (2017) Role of PD-1 in immunity and diseases. Curr Top Microbiol Immunol 410:75–97PubMedGoogle Scholar
  73. 73.
    Balar AV, Weber JS (2017) PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol Immunother 66(5):551–564PubMedCrossRefGoogle Scholar
  74. 74.
    Yu Y, Tsang JC, Wang C, Clare S, Wang J, Chen X, Brandt C, Kane L, Campos LS, Lu L, Belz GT, McKenzie AN, Teichmann SA, Dougan G, Liu P (2016) Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway. Nature 539(7627):102–106PubMedCrossRefGoogle Scholar
  75. 75.
    Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo TC, Sun MA, Martin EL, Zhu N, Woodward EL, Elias MS, Scott J, Reynolds NJ, Paul WE, Fowler DH, Amarnath S (2017) PD-1 regulates KLRG1(+) group 2 innate lymphoid cells. J Exp Med 214(6):1663–1678PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Schwartz C, Khan AR, Floudas A, Saunders SP, Hams E, Rodewald HR, McKenzie ANJ, Fallon PG (2017) ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control. J Exp Med 214(9):2507–2521PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kang J, Malhotra N (2015) Transcription factor networks directing the development, function, and evolution of innate lymphoid effectors. Annu Rev Immunol 33:505–538PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zhong C, Zhu J (2015) Transcriptional regulatory network for the development of innate lymphoid cells. Mediat Inflamm 2015:264502Google Scholar
  79. 79.
    Seillet C, Mielke LA, Amann-Zalcenstein DB, Su S, Gao J, Almeida FF, Shi W, Ritchie ME, Naik SH, Huntington ND (2016) Deciphering the innate lymphoid cell transcriptional program. Cell Rep 17(2):436–447PubMedCrossRefGoogle Scholar
  80. 80.
    Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, Gilfillan S, Colonna M (2015) Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol 16(3):306–317PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lim AI, Menegatti S, Bustamante J, Le Bourhis L, Allez M, Rogge L, Casanova J-L, Yssel H, Di Santo JP (2016) IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J Exp Med 213(4):569–583PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Li BW, Stadhouders R, De Bruijn MJ, Lukkes M, Beerens DM, Brem MD, KleinJan A, Bergen I, Vroman H, Kool M (2017) Group 2 innate lymphoid cells exhibit a dynamic phenotype in allergic airway inflammation. Front Immunol 8:1684PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, Hofree M, Cuoco MS, Rodman C, Farouq D, Haas BJ, Tickle TL, Trombetta JJ, Baral P, Klose CSN, Mahlakoiv T, Artis D, Rozenblatt-Rosen O, Chiu IM, Levy BD, Kowalczyk MS, Regev A, Kuchroo VK (2017) The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549(7672):351–356PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, Williamson PR, Urban JF Jr, Paul WE (2015) IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol 16(2):161–169PubMedCrossRefGoogle Scholar
  85. 85.
    Seehus CR, Kadavallore A, Torre B, Yeckes AR, Wang Y, Tang J, Kaye J (2017) Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nat Commun 8(1):1900PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Cai T, Qiu J, Ji Y, Li W, Ding Z, Suo C, Chang J, Wang J, He R, Qian Y, Guo X, Zhou L, Sheng H, Shen L (2019) IL-17-producing ST2(+) group 2 innate lymphoid cells play a pathogenic role in lung inflammation. J Allergy Clin Immunol 143(1):229–244PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Pathogenic Biology, Hengyang Medical CollegeUniversity of South ChinaHengyangChina
  2. 2.Hunan Provincial Key Laboratory for Special Pathogens Prevention and ControlUniversity of South ChinaHengyangChina
  3. 3.Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina

Personalised recommendations