Advertisement

Molecular control of the female germline stem cell niche size in Drosophila

  • Hwei-Jan HsuEmail author
  • Majid Bahader
  • Chun-Ming Lai
Review

Abstract

Adult stem cells have a unique capacity to renew themselves and generate differentiated cells that are needed in the body. These cells are recruited and maintained by the surrounding microenvironment, known as the stem cell niche, during organ development. Thus, the stem cell niche is required for proper tissue homeostasis, and its dysregulation is associated with tumorigenesis and tissue degeneration. The identification of niche components and the mechanisms that regulate niche establishment and maintenance, however, are just beginning to be uncovered. Germline stem cells (GSCs) of the Drosophila ovary provide an excellent model for studying the stem cell niche in vivo because of their well-characterized cell biology and the availability of genetic tools. In this review, we introduce the ovarian GSC niche, and the key signaling pathways for niche precursor segregation, niche specification, and niche extracellular environment establishment and niche maintenance that are involved in regulating niche size during development and adulthood.

Keywords

GSCs GSC niche Hh Notch Insulin Egfr Ecdysone ovary 

Notes

Acknowledgements

We thank Marcus Calkins for English editing.

Author contributions

MB wrote the introduction, CML drew the germarium and larval ovary schemes, and HJH wrote the paper.

Funding

The work was supported by the intramural funding from the Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan and the Ministry of Science and Technology, Taiwan (107-2311-B-001-004-MY3).

References

  1. 1.
    Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25 (PubMed PMID: 747780) Google Scholar
  2. 2.
    Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290(5490):328.  https://doi.org/10.1126/science.290.5490.328 Google Scholar
  3. 3.
    Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294(5551):2546.  https://doi.org/10.1126/science.1066700 Google Scholar
  4. 4.
    Dubois L, Makki R, Meister M, Vincent A, Crozatier M (2007) Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446:325.  https://doi.org/10.1038/nature05650. https://www.nature.com/articles/nature05650#supplementary-information
  5. 5.
    Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U (2007) A hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446:320.  https://doi.org/10.1038/nature05585 Google Scholar
  6. 6.
    Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG et al (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417:660.  https://doi.org/10.1038/nature754 Google Scholar
  7. 7.
    Wong MD, Jin Z, Xie T (2005) Molecular mechanisms of germline stem cell regulation. Annu Rev Genet 39(1):173–195.  https://doi.org/10.1146/annurev.genet.39.073003.105855 Google Scholar
  8. 8.
    Zhang J, Li L (2008) Stem cell niche: microenvironment and beyond. J Biol Chem 283(15):9499–9503.  https://doi.org/10.1074/jbc.R700043200 (PubMed PMID: 18272517) Google Scholar
  9. 9.
    Joshi PM, Riddle MR, Djabrayan NJV, Rothman JH (2010) Caenorhabditis elegans as a model for stem cell biology. Dev Dyn 239(5):1539–1554.  https://doi.org/10.1002/dvdy.22296 (PubMed PMID: 20419785) Google Scholar
  10. 10.
    Losick Vicki P, Morris Lucy X, Fox Donald T, Spradling A (2011) Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21(1):159–171.  https://doi.org/10.1016/j.devcel.2011.06.018 Google Scholar
  11. 11.
    Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21(1):605–631.  https://doi.org/10.1146/annurev.cellbio.21.012704.131525 Google Scholar
  12. 12.
    König A, Yatsenko AS, Weiss M, Shcherbata HR (2011) Ecdysteroids affect Drosophila ovarian stem cell niche formation and early germline differentiation. EMBO J 30(8):1549–1562.  https://doi.org/10.1038/emboj.2011.73 (Epub 03/18, PubMed PMID: 21423150) Google Scholar
  13. 13.
    Bonfini A, Wilkin MB, Baron M (2015) Reversible regulation of stem cell niche size associated with dietary control of Notch signalling. BMC Dev Biol 15(1):8.  https://doi.org/10.1186/s12861-015-0059-8 Google Scholar
  14. 14.
    Hsu HJ, Drummond-Barbosa D (2011) Insulin signals control the competence of the Drosophila female germline stem cell niche to respond to Notch ligands. Dev Biol. 350(2):290–300.  https://doi.org/10.1016/j.ydbio.2010.11.032 (PubMed PMID: 21145317) Google Scholar
  15. 15.
    Zhao R, Xuan Y, Li X, Xi R (2008) Age-related changes of germline stem cell activity, niche signaling activity and egg production in Drosophila. Aging Cell 7(3):344–354.  https://doi.org/10.1111/j.1474-9726.2008.00379.x Google Scholar
  16. 16.
    Pan L, Chen S, Weng C, Call G, Zhu D, Tang H et al (2007) Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1(4):458–469.  https://doi.org/10.1016/j.stem.2007.09.010 Google Scholar
  17. 17.
    McGovern M, Voutev R, Maciejowski J, Corsi AK, Hubbard EJ (2009) A “latent niche” mechanism for tumor initiation. Proc Natl Acad Sci USA 106(28):11617–11622.  https://doi.org/10.1073/pnas.0903768106 (PubMed PMID: 19564624; PubMed Central PMCID: PMCPMC2710656) Google Scholar
  18. 18.
    Spradling AC (1993) Developmental genetics of oogenesis. In: Martinez-Arias B (ed) The development of Drosophila melanogaster, vol 1. Cold Spring Harbor Laboratory Press, New York, pp 1–70Google Scholar
  19. 19.
    Morris LX, Spradling AC (2011) Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development 138(11):2207.  https://doi.org/10.1242/dev.065508 Google Scholar
  20. 20.
    Kirilly D, Wang S, Xie T (2011) Self-maintained escort cells form a germline stem cell differentiation niche. Development (Cambridge, England) 138(23):5087–5097.  https://doi.org/10.1242/dev.067850 (PubMed PMID: 22031542) Google Scholar
  21. 21.
    Chen S, Wang S, Xie T (2011) Restricting self-renewal signals within the stem cell niche: multiple levels of control. Curr Opin Genet Dev 21(6):684–689.  https://doi.org/10.1016/j.gde.2011.07.008 Google Scholar
  22. 22.
    Forbes AJ, Lin H, Ingham PW, Spradling AC (1996) hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 122(4):1125Google Scholar
  23. 23.
    Song X, Xie T (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc Natl Acad Sci USA 99(23):14813–14818.  https://doi.org/10.1073/pnas.232389399 (Epub 10/22, PubMed PMID: 12393817) Google Scholar
  24. 24.
    de Cuevas M, Spradling AC (1998) Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125(15):2781Google Scholar
  25. 25.
    Dansereau DA, Lasko P (2008) The development of germline stem cells in Drosophila. Methods Mol Biol 450:3–26.  https://doi.org/10.1007/978-1-60327-214-8_1 (PubMed PMID: 18370048; PubMed Central PMCID: PMCPMC2729445) Google Scholar
  26. 26.
    Williamson A, Lehmann R (1996) Germ cell development in Drosophila. Annu Rev Cell Dev Biol 12(1):365–391.  https://doi.org/10.1146/annurev.cellbio.12.1.365 Google Scholar
  27. 27.
    Lai C-M, Lin K-Y, Kao S-H, Chen Y-N, Huang F, Hsu H-J (2017) Hedgehog signaling establishes precursors for germline stem cell niches by regulating cell adhesion. J Cell Biol 216(5):1439.  https://doi.org/10.1083/jcb.201610063 Google Scholar
  28. 28.
    Chen Y, Struhl G (1996) Dual roles for patched in sequestering and transducing hedgehog. Cell 87(3):553–563.  https://doi.org/10.1016/S0092-8674(00)81374-4 Google Scholar
  29. 29.
    Cohen ED, Mariol M-C, Wallace RMH, Weyers J, Kamberov YG, Pradel J et al (2002) DWnt4 regulates cell movement and focal adhesion kinase during Drosophila ovarian morphogenesis. Dev Cell 2(4):437–448.  https://doi.org/10.1016/S1534-5807(02)00142-9 Google Scholar
  30. 30.
    Song X, Call GB, Kirilly D, Xie T (2007) Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development 134(6):1071.  https://doi.org/10.1242/dev.003392 Google Scholar
  31. 31.
    King RC, Aggarwal SK, Aggarwal U (1968) The development of the female Drosophila reproductive system. J Morphol 124(2):143–166.  https://doi.org/10.1002/jmor.1051240203 (PubMed PMID: 5654408) Google Scholar
  32. 32.
    Li MA, Alls JD, Avancini RM, Koo K, Godt D (2003) The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nat Cell Biol 5:994.  https://doi.org/10.1038/ncb1058. https://www.nature.com/articles/ncb1058#supplementary-information
  33. 33.
    Huangfu D, Anderson KV (2006) Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133(1):3–14.  https://doi.org/10.1242/dev.02169 (PubMed PMID: 16339192) Google Scholar
  34. 34.
    Tseng C-Y, Su Y-H, Yang S-M, Lin K-Y, Lai C-M, Rastegari E et al (2018) Smad-independent BMP signaling in somatic cells limits the size of the germline stem cell pool. Stem Cell Rep 11(3):811–827.  https://doi.org/10.1016/j.stemcr.2018.07.008 (PubMed PMID: 30122445) Google Scholar
  35. 35.
    Gilboa L, Lehmann R (2006) Soma–germline interactions coordinate homeostasis and growth in the Drosophila gonad. Nature 443:97.  https://doi.org/10.1038/nature05068. https://www.nature.com/articles/nature05068#supplementary-information
  36. 36.
    Rutledge BJ, Zhang K, Bier E, Jan YN, Perrimon N (1992) The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev 6(8):1503–1517 (PubMed PMID: 1644292) Google Scholar
  37. 37.
    Gancz D, Gilboa L (2013) Insulin and target of rapamycin signaling orchestrate the development of ovarian niche-stem cell units in Drosophila. Development 140(20):4145.  https://doi.org/10.1242/dev.093773 Google Scholar
  38. 38.
    Sarikaya DP, Extavour CG (2015) The Hippo pathway regulates homeostatic growth of stem cell niche precursors in the Drosophila ovary. PLoS Genet 11(2):e1004962.  https://doi.org/10.1371/journal.pgen.1004962 (PubMed PMID: 25643260; PubMed Central PMCID: PMCPMC4333732) Google Scholar
  39. 39.
    Cho Y, Lai C-M, Lin K-Y, Hsu H-J (2018) A targeted RNAi screen reveals Drosophila female-sterile genes that control the size of germline stem cell niche during development. G3 Genes Genomes Genet 8(7):2345.  https://doi.org/10.1534/g3.118.200355 Google Scholar
  40. 40.
    Fiuza UM, Arias AM (2007) Cell and molecular biology of Notch. J Endocrinol 194(3):459–474.  https://doi.org/10.1677/JOE-07-0242 (PubMed PMID: 17761886) Google Scholar
  41. 41.
    Yeh E, Dermer M, Commisso C, Zhou L, McGlade CJ, Boulianne GL (2001) Neuralized functions as an E3 ubiquitin ligase during Drosophila development. Curr Biol 11(21):1675–1679.  https://doi.org/10.1016/S0960-9822(01)00527-9 Google Scholar
  42. 42.
    Yatsenko AS, Shcherbata HR (2018) Stereotypical architecture of the stem cell niche is spatiotemporally established by miR-125-dependent coordination of Notch and steroid signaling. Development 145(3):dev159178.  https://doi.org/10.1242/dev.159178 Google Scholar
  43. 43.
    Diederich RJ, Matsuno K, Hing H, Artavanis-Tsakonas S (1994) Cytosolic interaction between deltex and Notch ankyrin repeats implicates deltex in the Notch signaling pathway. Development 120(3):473Google Scholar
  44. 44.
    Wilkin MB, Baron M (2005) Endocytic regulation of Notch activation and down-regulation (review). Mol Membr Biol 22(4):279–289.  https://doi.org/10.1080/09687860500129778 (PubMed PMID: 16154900) Google Scholar
  45. 45.
    Shimizu H, Wilkin Marian B, Woodcock Simon A, Bonfini A, Hung Y, Mazaleyrat S et al (2017) The Drosophila ZO-1 protein Polychaetoid suppresses Deltex-regulated Notch activity to modulate germline stem cell niche formation. Open Biol 7(4):160322.  https://doi.org/10.1098/rsob.160322 Google Scholar
  46. 46.
    Panchal T, Chen X, Alchits E, Oh Y, Poon J, Kouptsova J et al (2017) Specification and spatial arrangement of cells in the germline stem cell niche of the Drosophila ovary depend on the Maf transcription factor Traffic jam. PLoS Genet 13(5):e1006790.  https://doi.org/10.1371/journal.pgen.1006790 Google Scholar
  47. 47.
    Penalva LOF, Sánchez L (2003) RNA binding protein sex-lethal (Sxl) and control of Drosophila sex determination and dosage compensation. Microbiol Mol Biol Rev 67(3):343.  https://doi.org/10.1128/MMBR.67.3.343-359.2003 Google Scholar
  48. 48.
    Sciabica KS, Hertel KJ (2006) The splicing regulators Tra and Tra2 are unusually potent activators of pre-mRNA splicing. Nucleic Acids Res 34(22):6612–6620.  https://doi.org/10.1093/nar/gkl984 Google Scholar
  49. 49.
    Lund AH, van Lohuizen M (2004) Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 16(3):239–246.  https://doi.org/10.1016/j.ceb.2004.03.010 Google Scholar
  50. 50.
    Soldatov A, Nabirochkina E, Georgieva S, Belenkaja T, Georgiev P (1999) TAFII 40 protein is encoded by the e(y)1 gene: biological consequences of mutations. Mol Cell Biol 19(5):3769.  https://doi.org/10.1128/MCB.19.5.3769 Google Scholar
  51. 51.
    Shidlovskii YV, Krasnov AN, Nikolenko JV, Lebedeva LA, Kopantseva M, Ermolaeva MA et al (2005) A novel multidomain transcription coactivator SAYP can also repress transcription in heterochromatin. EMBO J 24(1):97.  https://doi.org/10.1038/sj.emboj.7600508 Google Scholar
  52. 52.
    van der Horst A, Lens SMA (2014) Cell division: control of the chromosomal passenger complex in time and space. Chromosoma 123(1):25–42.  https://doi.org/10.1007/s00412-013-0437-6 Google Scholar
  53. 53.
    Nakato H, Futch TA, Selleck SB (1995) The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development 121(11):3687Google Scholar
  54. 54.
    Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55.  https://doi.org/10.1016/j.matbio.2015.02.003 Google Scholar
  55. 55.
    Matsuoka S, Hiromi Y, Asaoka M (2013) Egfr signaling controls the size of the stem cell precursor pool in the Drosophila ovary. Mech Dev 130(4):241–253.  https://doi.org/10.1016/j.mod.2013.01.002 Google Scholar
  56. 56.
    Hamaratoglu F, Affolter M, Pyrowolakis G (2014) Dpp/BMP signaling in flies: from molecules to biology. Semin Cell Dev Biol 32:128–136.  https://doi.org/10.1016/j.semcdb.2014.04.036 Google Scholar
  57. 57.
    Hafen E (2004) Cancer, type 2 diabetes, and ageing: news from flies and worms. Swiss Med Wkly 134(49–50):711–719.  https://doi.org/10.4414/smw.2004.09885 (PubMed PMID: 15635489) Google Scholar
  58. 58.
    Hsu H-J, Drummond-Barbosa D (2009) Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci USA 106(4):1117–1121.  https://doi.org/10.1073/pnas.0809144106 (Epub 01/09, PubMed PMID: 19136634) Google Scholar
  59. 59.
    Yang S-A, Wang W-D, Chen C-T, Tseng C-Y, Chen Y-N, Hsu H-J (2013) FOXO/Fringe is necessary for maintenance of the germline stem cell niche in response to insulin insufficiency. Dev Biol 382(1):124–135.  https://doi.org/10.1016/j.ydbio.2013.07.018 Google Scholar
  60. 60.
    Thomas JO (1999) Histone H1: location and role. Curr Opin Cell Biol 11(3):312–317.  https://doi.org/10.1016/S0955-0674(99)80042-8 Google Scholar
  61. 61.
    Yang Z, Sun J, Hu Y, Wang F, Wang X, Qiao H-H et al (2017) Histone H1 defect in escort cells triggers germline tumor in Drosophila ovary. Dev Biol 424(1):40–49.  https://doi.org/10.1016/j.ydbio.2017.02.012 Google Scholar
  62. 62.
    Eliazer S, Shalaby NA, Buszczak M (2011) Loss of lysine-specific demethylase 1 nonautonomously causes stem cell tumors in the Drosophila ovary. Proc Natl Acad Sci 108(17):7064.  https://doi.org/10.1073/pnas.1015874108 Google Scholar
  63. 63.
    Jin Z, Flynt Alex S, Lai Eric C (2013) Drosophila piwi mutants exhibit germline stem cell tumors that are sustained by elevated Dpp signaling. Curr Biol 23(15):1442–1448.  https://doi.org/10.1016/j.cub.2013.06.021 Google Scholar
  64. 64.
    Wang X, Pan L, Wang S, Zhou J, McDowell W, Park J et al (2011) Histone H3K9 trimethylase Eggless controls germline stem cell maintenance and differentiation. PLoS Genet 7(12):e1002426.  https://doi.org/10.1371/journal.pgen.1002426 (PubMed PMID: 22216012; PubMed Central PMCID: PMCPMC3245301) Google Scholar
  65. 65.
    Ma X, Wang S, Do T, Song X, Inaba M, Nishimoto Y et al (2014) Piwi is required in multiple cell types to control germline stem cell lineage development in the Drosophila ovary. PLoS One 9(3):e90267.  https://doi.org/10.1371/journal.pone.0090267 (PubMed PMID: 24658126; PubMed Central PMCID: PMCPMC3962343) Google Scholar
  66. 66.
    Yang F, Quan Z, Huang H, He M, Liu X, Cai T et al (2019) Ovaries absent links dLsd1 to HP1a for local H3K4 demethylation required for heterochromatic gene silencing. eLife 8:40806.  https://doi.org/10.7554/elife.40806 Google Scholar
  67. 67.
    Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M et al (2007) Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev 21(18):2300–2311.  https://doi.org/10.1101/gad.1564307 (PubMed PMID: 17875665; PubMed Central PMCID: PMCPMC1973144) Google Scholar
  68. 68.
    Lu X, Wontakal SN, Kavi H, Kim BJ, Guzzardo PM, Emelyanov AV et al (2013) Drosophila H1 regulates the genetic activity of heterochromatin by recruitment of Su(var)3–9. Science 340(6128):78.  https://doi.org/10.1126/science.1234654 Google Scholar
  69. 69.
    Ables ET, Drummond-Barbosa D (2010) The steroid hormone ecdysone functions with intrinsic chromatin remodeling factors to control female germline stem cells in Drosophila. Cell Stem Cell 7(5):581–592.  https://doi.org/10.1016/j.stem.2010.10.001 (PubMed PMID: 21040900; PubMed Central PMCID: PMCPMC3292427) Google Scholar
  70. 70.
    Hayashi Y, Kobayashi S, Nakato H (2009) Drosophila glypicans regulate the germline stem cell niche. J Cell Biol 187(4):473–480.  https://doi.org/10.1083/jcb.200904118 (PubMed PMID: 19948496) Google Scholar
  71. 71.
    Guo Z, Wang Z (2009) The glypican Dally is required in the niche for the maintenance of germline stem cells and short-range BMP signaling in the Drosophila ovary. Development 136(21):3627.  https://doi.org/10.1242/dev.036939 Google Scholar
  72. 72.
    Luo L, Wang H, Fan C, Liu S, Cai Y (2015) Wnt ligands regulate Tkv expression to constrain Dpp activity in the Drosophila ovarian stem cell niche. J Cell Biol 209(4):595.  https://doi.org/10.1083/jcb.201409142 Google Scholar
  73. 73.
    Krens SFG, Heisenberg C-P (2011) Chapter six—Cell sorting in development. In: Labouesse M (ed) Current topics in developmental biology, vol 95. Academic Press, Cambridge, pp 189–213Google Scholar
  74. 74.
    Sahut-Barnola I, Godt D, Laski FA, Couderc J-L (1995) Drosophila ovary morphogenesis: analysis of terminal filament formation and identification of a gene required for this process. Dev Biol 170(1):127–135.  https://doi.org/10.1006/dbio.1995.1201 Google Scholar
  75. 75.
    Godt D, Laski FA (1995) Mechanisms of cell rearrangement and cell recruitment in Drosophila ovary morphogenesis and the requirement of bric a brac. Development 121(1):173Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Cellular and Organismic BiologyAcademia SinicaTaipeiTaiwan
  2. 2.Department of Developmental BiologySloan-Kettering InstituteNew YorkUSA

Personalised recommendations