Advertisement

Biological functions and clinical applications of exosomal non-coding RNAs in hepatocellular carcinoma

  • Changbiao Li
  • Xiao XuEmail author
Review

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, with a high mortality rate. Its dismal prognosis is attributed to late diagnosis, high risk of recurrence and drug resistance. To improve the survival of patients with HCC, new approaches are required for early diagnosis, real-time monitoring and effective treatment. Exosomes are small membranous vesicles released by most cells that contain biological molecules and play a great role in intercellular communication under physiological or pathological conditions. In cancer, exosomes from tumor cells or non-tumor cells can be taken up by neighboring or distant target cells, and the cargoes in exosomes are functional to modulate the behaviors of tumors or reshape tumor microenvironment (TME). As essential components, non-coding RNAs (ncRNAs) are selectively enriched in exosomes, and exosomal ncRNAs participate in regulating specific aspects of tumor development, including tumorigenesis, tumor metastasis, angiogenesis, immunomodulation and drug resistance. Besides, dysregulated exosomal ncRNAs have emerged as potential biomarkers, and exosomes can serve as natural vehicles to deliver tumor-suppressed ncRNAs for treatment. In this review, we briefly summarize the biology of exosomes, the functions of exosomal ncRNAs in HCC development and their potential clinical applications, including as biomarkers and therapeutic tools.

Keywords

Hepatocellular carcinoma Exosome Exosomal non-coding RNA Tumor biology Biomarker Delivery vehicle 

Notes

Acknowledgements

Our work is supported by National S&T Major Project (No. 2017ZX10203205), the National Natural Science Foundation of China (No. 81570589), the National Natural Science Fund for Distinguished Young Scholars of China (No. 81625003) and Changjiang Scholars Program Foundation of Chinese Ministry of Education.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflicts of interest.

References

  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A (2018) Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 68(6):394–424CrossRefPubMedGoogle Scholar
  2. 2.
    El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142(6):1264–1273 e1261.  https://doi.org/10.1053/j.gastro.2011.12.061 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Morgan TR, Mandayam S, Jamal MM (2004) Alcohol and hepatocellular carcinoma. Gastroenterology 127(5 Suppl 1):S87–S96CrossRefPubMedGoogle Scholar
  4. 4.
    Dyson J, Jaques B, Chattopadyhay D, Lochan R, Graham J, Das D, Aslam T, Patanwala I, Gaggar S, Cole M, Sumpter K, Stewart S, Rose J, Hudson M, Manas D, Reeves HL (2014) Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol 60(1):110–117.  https://doi.org/10.1016/j.jhep.2013.08.011 CrossRefPubMedGoogle Scholar
  5. 5.
    Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, Bonaventure A, Valkov M, Johnson CJ, Esteve J, Ogunbiyi OJ, Azevedo ESG, Chen WQ, Eser S, Engholm G, Stiller CA, Monnereau A, Woods RR, Visser O, Lim GH, Aitken J, Weir HK, Coleman MP, Group CW (2018) Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391(10125):1023–1075.  https://doi.org/10.1016/s0140-6736(17)33326-3 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tzartzeva K, Obi J, Rich NE, Parikh ND, Marrero JA, Yopp A, Waljee AK, Singal AG (2018) Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology 154(6):1706–1718 e1701.  https://doi.org/10.1053/j.gastro.2018.01.064 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet 391(10127):1301–1314CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bruix J, Reig M, Sherman M (2016) Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 150(4):835–853CrossRefPubMedGoogle Scholar
  9. 9.
    Bruix J, Raoul JL, Sherman M, Mazzaferro V, Bolondi L, Craxi A, Galle PR, Santoro A, Beaugrand M, Sangiovanni A, Porta C, Gerken G, Marrero JA, Nadel A, Shan M, Moscovici M, Voliotis D, Llovet JM (2012) Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. J Hepatol 57(4):821–829.  https://doi.org/10.1016/j.jhep.2012.06.014 CrossRefPubMedGoogle Scholar
  10. 10.
    Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Voliotis D, Guan Z (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10(1):25–34.  https://doi.org/10.1016/S1470-2045(08)70285-7 CrossRefPubMedGoogle Scholar
  11. 11.
    Mohkam K, Dumont PN, Manichon AF, Jouvet JC, Boussel L, Merle P, Ducerf C, Lesurtel M, Rode A, Mabrut JY (2018) No-touch multibipolar radiofrequency ablation vs. surgical resection for solitary hepatocellular carcinoma ranging from 2 to 5 cm. J Hepatol 68(6):1172–1180.  https://doi.org/10.1016/j.jhep.2018.01.014 CrossRefPubMedGoogle Scholar
  12. 12.
    Lim C, Bhangui P, Salloum C, Gomez-Gavara C, Lahat E, Luciani A, Compagnon P, Calderaro J, Feray C, Azoulay D (2017) Impact of time to surgery in the outcome of patients with liver resection for BCLC 0-A stage hepatocellular carcinoma. J Hepatol.  https://doi.org/10.1016/j.jhep.2017.09.017 CrossRefPubMedGoogle Scholar
  13. 13.
    De Rubis G, Rajeev Krishnan S, Bebawy M (2019) Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol Sci 40(3):172–186.  https://doi.org/10.1016/j.tips.2019.01.006 CrossRefPubMedGoogle Scholar
  14. 14.
    Ruivo CF, Adem B, Silva M, Melo SA (2017) The biology of cancer exosomes: insights and new perspectives. Cancer Res 77(23):6480–6488.  https://doi.org/10.1158/0008-5472.CAN-17-0994 CrossRefPubMedGoogle Scholar
  15. 15.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523(7559):177–182.  https://doi.org/10.1038/nature14581 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, Campigotto F, Salem KZ, Huynh D, Glavey SV, Rivotto B, Sacco A, Roccaro AM, Bouyssou J, Minvielle S, Moreau P, Facon T, Leleu X, Weller E, Trippa L, Ghobrial IM (2017) Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 129(17):2429–2436.  https://doi.org/10.1182/blood-2016-09-742296 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, Xia H, Man Q, Zhong W, Antelo LF, Wu B, Xiong X, Liu X, Guan L, Li T, Liu S, Yang R, Lu Y, Dong L, McGettigan S, Somasundaram R, Radhakrishnan R, Mills G, Lu Y, Kim J, Chen YH, Dong H, Zhao Y, Karakousis GC, Mitchell TC, Schuchter LM, Herlyn M, Wherry EJ, Xu X, Guo W (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560(7718):382–386.  https://doi.org/10.1038/s41586-018-0392-8 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16(2):71–84.  https://doi.org/10.1038/nrg3863 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Anastasiadou E, Jacob LS, Slack FJ (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18(1):5–18.  https://doi.org/10.1038/nrc.2017.99 CrossRefPubMedGoogle Scholar
  20. 20.
    Fan Q, Yang L, Zhang X, Peng X, Wei S, Su D, Zhai Z, Hua X, Li H (2018) The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Lett 414:107–115.  https://doi.org/10.1016/j.canlet.2017.10.040 CrossRefPubMedGoogle Scholar
  21. 21.
    Wang H, Hou L, Li A, Duan Y, Gao H, Song X (2014) Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed Res Int 2014:864894.  https://doi.org/10.1155/2014/864894 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang C, Yang X, Qi Q, Gao Y, Wei Q, Han S (2018) lncRNA-HEIH in serum and exosomes as a potential biomarker in the HCV-related hepatocellular carcinoma. Cancer Biomark 21(3):651–659.  https://doi.org/10.3233/CBM-170727 CrossRefPubMedGoogle Scholar
  23. 23.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579.  https://doi.org/10.1038/nri855 CrossRefPubMedGoogle Scholar
  24. 24.
    Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172CrossRefPubMedGoogle Scholar
  25. 25.
    Lindenbergh MFS, Stoorvogel W (2018) Antigen presentation by extracellular vesicles from professional antigen-presenting cells. Annu Rev Immunol 36:435–459.  https://doi.org/10.1146/annurev-immunol-041015-055700 CrossRefPubMedGoogle Scholar
  26. 26.
    Cabral J, Ryan AE, Griffin MD, Ritter T (2018) Extracellular vesicles as modulators of wound healing. Adv Drug Deliv Rev 129:394–406.  https://doi.org/10.1016/j.addr.2018.01.018 CrossRefPubMedGoogle Scholar
  27. 27.
    Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30(6):836–848.  https://doi.org/10.1016/j.ccell.2016.10.009 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA, Newman GR, Jasani B (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247(1–2):163–174CrossRefPubMedGoogle Scholar
  29. 29.
    de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M, van Balkom BW (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles.  https://doi.org/10.3402/jev.v1i0.18396 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421.  https://doi.org/10.1186/1471-2407-12-421 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228.  https://doi.org/10.1038/nrm.2017.125 CrossRefPubMedGoogle Scholar
  32. 32.
    Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zoller M (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70(4):1668–1678.  https://doi.org/10.1158/0008-5472.CAN-09-2470 CrossRefPubMedGoogle Scholar
  33. 33.
    Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles.  https://doi.org/10.3402/jev.v3.24641 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li P, Kaslan M, Lee SH, Yao J, Gao Z (2017) Progress in exosome isolation techniques. Theranostics 7(3):789–804.  https://doi.org/10.7150/thno.18133 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gardiner C, Di Vizio D, Sahoo S, Thery C, Witwer KW, Wauben M, Hill AF (2016) Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles 5:32945.  https://doi.org/10.3402/jev.v5.32945 CrossRefPubMedGoogle Scholar
  36. 36.
    Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borras FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MA, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Gorecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzas EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekstrom K, El Andaloussi S, Elie-Caille C, Erdbrugger U, Falcon-Perez JM, Fatima F, Fish JE, Flores-Bellver M, Forsonits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gamez-Valero A, Gardiner C, Gartner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Gorgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanovic MM, Kovacs AF, Kramer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lasser C, Laurent LC, Lavieu G, Lazaro-Ibanez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Line A, Linnemannstons K, Llorente A, Lombard CA, Lorenowicz MJ, Lorincz AM, Lotvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Moller A, Moller Jorgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen EN, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Ostergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saa P, Sahoo S, Salas-Huenuleo E, Sanchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schoyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Sodar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot E, Verweij FJ, Vestad B, Vinas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yanez-Mo M, Yin H, Yuana Y, Zappulli V, Zarubova J, Zekas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750.  https://doi.org/10.1080/20013078.2018.1535750 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Boriachek K, Islam MN, Moller A, Salomon C, Nguyen NT, Hossain MSA, Yamauchi Y, Shiddiky MJA (2018) Biological functions and current advances in isolation and detection strategies for exosome nanovesicles. Small (Weinheim an der Bergstrasse, Germany).  https://doi.org/10.1002/smll.201702153 CrossRefGoogle Scholar
  38. 38.
    Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, Kohli M, Thibodeau SN, Boardman L, Wang L (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319.  https://doi.org/10.1186/1471-2164-14-319 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981–984.  https://doi.org/10.1038/cr.2015.82 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jin X, Chen Y, Chen H, Fei S, Chen D, Cai X, Liu L, Lin B, Su H, Zhao L, Su M, Pan H, Shen L, Xie D, Xie C (2017) Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res 23(17):5311–5319.  https://doi.org/10.1158/1078-0432.CCR-17-0577 CrossRefPubMedGoogle Scholar
  41. 41.
    Chen J, Wang S, Jia S, Ding G, Jiang G, Cao L (2018) Integrated analysis of long non-coding RNA and mRNA expression profile in pancreatic cancer derived exosomes treated dendritic cells by microarray analysis. J Cancer 9(1):21–31.  https://doi.org/10.7150/jca.21749 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bellingham SA, Shambrook M, Hill AF (2017) quantitative analysis of exosomal miRNA via qPCR and digital PCR. Methods Mol Biol 1545:55–70.  https://doi.org/10.1007/978-1-4939-6728-5_5 CrossRefPubMedGoogle Scholar
  43. 43.
    Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G (2014) Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog 10(10):e1004424.  https://doi.org/10.1371/journal.ppat.1004424 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Santangelo L, Bordoni V, Montaldo C, Cimini E, Zingoni A, Battistelli C, D’Offizi G, Capobianchi MR, Santoni A, Tripodi M, Agrati C (2018) Hepatitis C virus direct-acting antivirals therapy impacts on extracellular vesicles microRNAs content and on their immunomodulating properties. Liver Int 38(10):1741–1750.  https://doi.org/10.1111/liv.13700 CrossRefPubMedGoogle Scholar
  45. 45.
    Kouwaki T, Fukushima Y, Daito T, Sanada T, Yamamoto N, Mifsud EJ, Leong CR, Tsukiyama-Kohara K, Kohara M, Matsumoto M, Seya T, Oshiumi H (2016) Extracellular vesicles including exosomes regulate innate immune responses to hepatitis B virus infection. Front Immunol 7:335.  https://doi.org/10.3389/fimmu.2016.00335 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Devhare PB, Sasaki R, Shrivastava S, Di Bisceglie AM, Ray R, Ray RB (2017) Exosome-mediated intercellular communication between hepatitis C virus-infected hepatocytes and hepatic stellate cells. J Virol.  https://doi.org/10.1128/jvi.02225-16 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Povero D, Eguchi A, Li H, Johnson CD, Papouchado BG, Wree A, Messer K, Feldstein AE (2014) Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease. PLoS One 9(12):e113651.  https://doi.org/10.1371/journal.pone.0113651 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Csak T, Bala S, Lippai D, Satishchandran A, Catalano D, Kodys K, Szabo G (2015) microRNA-122 regulates hypoxia-inducible factor-1 and vimentin in hepatocytes and correlates with fibrosis in diet-induced steatohepatitis. Liver Int 35(2):532–541.  https://doi.org/10.1111/liv.12633 CrossRefPubMedGoogle Scholar
  49. 49.
    Baranova A, Maltseva D, Tonevitsky A (2019) Adipose may actively delay progression of NAFLD by releasing tumor-suppressing, anti-fibrotic miR-122 into circulation. Obes Rev 20(1):108–118.  https://doi.org/10.1111/obr.12765 CrossRefPubMedGoogle Scholar
  50. 50.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437.  https://doi.org/10.1038/nm.3394 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292.  https://doi.org/10.1016/j.cell.2011.09.024 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Campbell K (2018) Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol 55:30–35.  https://doi.org/10.1016/j.ceb.2018.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li B, Mao R, Liu C, Zhang W, Tang Y, Guo Z (2018) LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells. Life Sci 197:122–129.  https://doi.org/10.1016/j.lfs.2018.02.006 CrossRefPubMedGoogle Scholar
  54. 54.
    Kubo N, Araki K, Kuwano H, Shirabe K (2016) Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol 22(30):6841–6850.  https://doi.org/10.3748/wjg.v22.i30.6841 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhang Z, Li X, Sun W, Yue S, Yang J, Li J, Ma B, Wang J, Yang X, Pu M, Ruan B, Zhao G, Huang Q, Wang L, Tao K, Dou K (2017) Loss of exosomal miR-320a from cancer-associated fibroblasts contributes to HCC proliferation and metastasis. Cancer Lett 397:33–42.  https://doi.org/10.1016/j.canlet.2017.03.004 CrossRefPubMedGoogle Scholar
  56. 56.
    Kogure T, Lin W, Yan I, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Xue X, Wang X, Zhao Y, Hu R, Qin L (2018) Exosomal miR-93 promotes proliferation and invasion in hepatocellular carcinoma by directly inhibiting TIMP2/TP53INP1/CDKN1A. Biochem Biophys Res Commun 502(4):515–521.  https://doi.org/10.1016/j.bbrc.2018.05.208 CrossRefPubMedGoogle Scholar
  58. 58.
    Kogure T, Yan IK, Lin WL, Patel T (2013) Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer 4(7–8):261–272.  https://doi.org/10.1177/1947601913499020 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Quail DF, Dannenberg AJ (2018) The obese adipose tissue microenvironment in cancer development and progression. Nat Rev Endocrinol.  https://doi.org/10.1038/s41574-018-0126-x CrossRefGoogle Scholar
  60. 60.
    Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, Fan Q, Li J, Ning T, Tian F, Li H, Sun W, Ying G, Ba Y (2018) Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene.  https://doi.org/10.1038/s41388-018-0619-z CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O’Connor ST, Chin AR, Yen Y, Wang Y, Marcusson EG, Chu P, Wu J, Wu X, Li AX, Li Z, Gao H, Ren X, Boldin MP, Lin PC, Wang SE (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25(4):501–515.  https://doi.org/10.1016/j.ccr.2014.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Fang JH, Zhang ZJ, Shang LR, Luo YW, Lin YF, Yuan Y, Zhuang SM (2018) Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology.  https://doi.org/10.1002/hep.29920 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Liu Y, Cao X (2016) Characteristics and significance of the pre-metastatic niche. Cancer Cell 30(5):668–681.  https://doi.org/10.1016/j.ccell.2016.09.011 CrossRefPubMedGoogle Scholar
  64. 64.
    Li K, Chen Y, Li A, Tan C, Liu X (2018) Exosomes play roles in sequential processes of tumor metastasis. Int J Cancer.  https://doi.org/10.1002/ijc.31774 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, Cao D, Tang L, Tang S, Wu M, Yang W, Wang H (2018) Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 9(1):191CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335.  https://doi.org/10.1038/nature15756 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massague J (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326.  https://doi.org/10.1016/j.cell.2009.11.025 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Liu H, Chen W, Zhi X, Chen E, Wei T, Zhang J, Shen J, Hu L, Zhao B, Feng X, Bai X, Liang T (2018) Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility. Oncogene 37(36):4964–4978CrossRefPubMedGoogle Scholar
  69. 69.
    Shao C, Yang F, Miao S, Liu W, Wang C, Shu Y, Shen H (2018) Role of hypoxia-induced exosomes in tumor biology. Mol Cancer 17(1):120.  https://doi.org/10.1186/s12943-018-0869-y CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lin X, Fang J, Yang X, Zhang C, Yuan Y, Zheng L, Zhuang S (2018) Hepatocellular carcinoma cell-secreted exosomal MicroRNA-210 promotes angiogenesis in vitro and in vivo. Mol Ther Nucleic Acids 11:243–252CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Matsuura Y, Wada H, Eguchi H, Gotoh K, Kobayashi S, Kinoshita M, Kubo M, Hayashi K, Iwagami Y, Yamada D, Asaoka T, Noda T, Kawamoto K, Takeda Y, Tanemura M, Umeshita K, Doki Y, Mori M (2018) Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells. Dig Dis Sci.  https://doi.org/10.1007/s10620-018-5380-1 CrossRefPubMedGoogle Scholar
  72. 72.
    Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J, Shi X (2018) Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res 37(1):324.  https://doi.org/10.1186/s13046-018-0965-2 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, Manno M, Raccosta S, Mancone C, Tripodi M, De Leo G, Alessandro R (2015) CD90 + liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer 14:155.  https://doi.org/10.1186/s12943-015-0426-x CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Whiteside TL (2016) Exosomes and tumor-mediated immune suppression. J Clin Invest 126(4):1216–1223.  https://doi.org/10.1172/JCI81136 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Eichmuller SB, Osen W, Mandelboim O, Seliger B (2017) Immune modulatory microRNAs involved in tumor attack and tumor immune escape. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/djx034 CrossRefPubMedGoogle Scholar
  76. 76.
    Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, Cui J, Zeng YX, Li J (2014) Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 5(14):5439–5452.  https://doi.org/10.18632/oncotarget.2118 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Liu J, Fan L, Yu H, Zhang J, He Y, Feng D, Wang F, Li X, Liu Q, Li Y, Guo Z, Gao B, Wei W, Wang H, Sun G (2019) Endoplasmic reticulum stress promotes liver cancer cells to release exosomal miR-23a-3p and up-regulate PD-L1 expression in macrophages. Hepatology.  https://doi.org/10.1002/hep.30607 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Li X, Lei Y, Wu M, Li N (2018) Regulation of macrophage activation and polarization by HCC-derived exosomal lncRNA TUC339. Int J Mol Sci.  https://doi.org/10.3390/ijms19102958 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Rao Q, Zuo B, Lu Z, Gao X, You A, Wu C, Du Z, Yin H (2016) Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology 64(2):456–472.  https://doi.org/10.1002/hep.28549 CrossRefPubMedGoogle Scholar
  80. 80.
    Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, Qi H, Guo H, Yin H (2017) Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol 67(4):739–748.  https://doi.org/10.1016/j.jhep.2017.05.019 CrossRefPubMedGoogle Scholar
  81. 81.
    Aucher A, Rudnicka D, Davis DM (2013) MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol 191(12):6250–6260.  https://doi.org/10.4049/jimmunol.1301728 CrossRefPubMedGoogle Scholar
  82. 82.
    Wang Y, Wang B, Xiao S, Li Y, Chen Q (2018) miR-125a/b inhibits tumor-associated macrophages mediated in cancer stem cells of hepatocellular carcinoma by targeting CD90. J Cell Biochem.  https://doi.org/10.1002/jcb.27436 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Wang X, Shen H, He Q, Tian W, Xia A, Lu XJ (2018) Exosomes derived from exhausted CD8 + T cells impaired the anticancer function of normal CD8 + T cells. J Med Genet.  https://doi.org/10.1136/jmedgenet-2018-105439 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Niu L, Liu L, Yang S, Ren J, Lai PBS (1868) Chen GG (2017) New insights into sorafenib resistance in hepatocellular carcinoma: responsible mechanisms and promising strategies. Biochim Biophys Acta Rev Cancer 2:564–570.  https://doi.org/10.1016/j.bbcan.2017.10.002 CrossRefGoogle Scholar
  85. 85.
    Takahashi K, Yan I, Wood J, Haga H, Patel T (2014) Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer Res 12(10):1377–1387CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Takahashi K, Yan I, Kogure T, Haga H, Patel T (2014) Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio 4:458–467CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Fu X, Liu M, Qu S, Ma J, Zhang Y, Shi T, Wen H, Yang Y, Wang S, Wang J, Nan K, Yao Y, Tian T (2018) Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3 K/Akt pathway. J Exp Clin Cancer Res 37(1):52CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, Nolte-’t Hoen EN, Piper MG, Sivaraman S, Skog J, Thery C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles.  https://doi.org/10.3402/jev.v2i0.20360 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Menahem B, Lubrano J, Duvoux C, Mulliri A, Alves A, Costentin C, Mallat A, Launoy G, Laurent A (2017) Liver transplantation versus liver resection for hepatocellular carcinoma in intention to treat: an attempt to perform an ideal meta-analysis. Liver Transpl 23(6):836–844.  https://doi.org/10.1002/lt.24758 CrossRefPubMedGoogle Scholar
  90. 90.
    Mourad A, Deuffic-Burban S, Ganne-Carrie N, Renaut-Vantroys T, Rosa I, Bouvier AM, Launoy G, Cattan S, Louvet A, Dharancy S, Trinchet JC, Yazdanpanah Y, Mathurin P (2014) Hepatocellular carcinoma screening in patients with compensated hepatitis C virus (HCV)-related cirrhosis aware of their HCV status improves survival: a modeling approach. Hepatology 59(4):1471–1481.  https://doi.org/10.1002/hep.26944 CrossRefPubMedGoogle Scholar
  91. 91.
    Choi DT, Kum HC, Park S, Ohsfeldt RL, Shen Y, Parikh ND, Singal AG (2018) Hepatocellular Carcinoma Screening is Associated with Increased Survival of Patients with Cirrhosis. Clin Gastroenterol Hepatol.  https://doi.org/10.1016/j.cgh.2018.10.031
  92. 92.
    Moon AM, Weiss NS, Beste LA, Su F, Ho SB, Jin GY, Lowy E, Berry K, Ioannou GN (2018) No Association Between Screening for Hepatocellular Carcinoma and Reduced Cancer-Related Mortality in Patients With Cirrhosis. Gastroenterology 155(4):1128–1139 e1126.  https://doi.org/10.1053/j.gastro.2018.06.079 CrossRefPubMedGoogle Scholar
  93. 93.
    Tang J, Li Y, Liu K, Zhu Q, Yang WH, Xiong LK, Guo DL (2018) Exosomal miR-9-3p suppresses HBGF-5 expression and is a functional biomarker in hepatocellular carcinoma. Minerva Med 109(1):15–23.  https://doi.org/10.23736/S0026-4806.17.05167-9 CrossRefPubMedGoogle Scholar
  94. 94.
    Xue X, Zhao Y, Wang X, Qin L, Hu R (2019) Development and validation of serum exosomal microRNAs as diagnostic and prognostic biomarkers for hepatocellular carcinoma. J Cell Biochem 120(1):135–142.  https://doi.org/10.1002/jcb.27165 CrossRefPubMedGoogle Scholar
  95. 95.
    Xu H, Chen Y, Dong X, Wang X (2018) Serum exosomal long noncoding RNAs ENSG00000258332.1 and LINC00635 for the diagnosis and prognosis of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev 27(6):710–716.  https://doi.org/10.1158/1055-9965.epi-17-0770 CrossRefPubMedGoogle Scholar
  96. 96.
    Liu W, Ren L, Wang X, Wang T, Zhang N, Gao Y, Luo H, Navarro-Alvarez N, Tang L (2015) Combination of exosomes and circulating microRNAs may serve as a promising tumor marker complementary to alpha-fetoprotein for early-stage hepatocellular carcinoma diagnosis in rats. J Cancer Res Clin Oncol 141(10):1767–1778CrossRefPubMedGoogle Scholar
  97. 97.
    Sohn W, Kim J, Kang SH, Yang SR, Cho J-Y, Cho HC, Shim SG, Paik Y-H (2015) Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med 47(9):e184.  https://doi.org/10.1038/emm.2015.68 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ellett F, Jorgensen J, Marand AL, Liu YM, Martinez MM, Sein V, Butler KL, Lee J, Irimia D (2018) Diagnosis of sepsis from a drop of blood by measurement of spontaneous neutrophil motility in a microfluidic assay. Nat Biomed Eng 2(4):207–214.  https://doi.org/10.1038/s41551-018-0208-z CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Shi M, Jiang Y, Yang L, Yan S, Wang Y, Lu X (2018) Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma. J Cell Biochem 119(6):4711–4716CrossRefPubMedGoogle Scholar
  100. 100.
    Liu W, Hu J, Zhou K, Chen F, Wang Z, Liao B, Dai Z, Cao Y, Fan J, Zhou J (2017) Serum exosomal miR-125b is a novel prognostic marker for hepatocellular carcinoma. Onco Targets Ther 10:3843–3851.  https://doi.org/10.2147/OTT.S140062 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Qu Z, Wu J, Wu J, Ji A, Qiang G, Jiang Y, Jiang C, Ding Y (2017) Exosomal miR-665 as a novel minimally invasive biomarker for hepatocellular carcinoma diagnosis and prognosis. Oncotarget 8(46):80666–80678PubMedPubMedCentralGoogle Scholar
  102. 102.
    Lee YR, Kim G, Tak WY, Jang SY, Kweon YO, Park JG, Lee HW, Han YS, Chun JM, Park SY, Hur K (2018) Circulating exosomal non-coding RNAs as prognostic biomarkers in human hepatocellular carcinoma. Int J Cancer.  https://doi.org/10.1002/ijc.31931 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Sugimachi K, Matsumura T, Hirata H, Uchi R, Ueda M, Ueo H, Shinden Y, Iguchi T, Eguchi H, Shirabe K, Ochiya T, Maehara Y, Mimori K (2015) Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br J Cancer 112(3):532–538CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Admyre C, Bohle B, Johansson SM, Focke-Tejkl M, Valenta R, Scheynius A, Gabrielsson S (2007) B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J Allergy Clin Immunol 120(6):1418–1424.  https://doi.org/10.1016/j.jaci.2007.06.040 CrossRefPubMedGoogle Scholar
  105. 105.
    Liang J, Zhang X, He S, Miao Y, Wu N, Li J, Gan Y (2018) Sphk2 RNAi nanoparticles suppress tumor growth via downregulating cancer cell derived exosomal microRNA. J Control Release 286:348–357.  https://doi.org/10.1016/j.jconrel.2018.07.039 CrossRefPubMedGoogle Scholar
  106. 106.
    Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, Ochiya T (2012) Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem 287(2):1397–1405.  https://doi.org/10.1074/jbc.M111.288662 CrossRefPubMedGoogle Scholar
  107. 107.
    Yin Z, Jiang K, Li R, Dong C, Wang L (2018) Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy. Mol Cancer 17(1):178.  https://doi.org/10.1186/s12943-018-0926-6 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi G (2013) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 22(5):758–771.  https://doi.org/10.1089/scd.2012.0304 CrossRefPubMedGoogle Scholar
  109. 109.
    Alzahrani FA, El-Magd MA, Abdelfattah-Hassan A, Saleh AA, Saadeldin IM, El-Shetry ES, Badawy AA, Alkarim S (2018) Potential effect of exosomes derived from cancer stem cells and MSCs on progression of DEN-induced HCC in rats. Stem Cells Int 2018:8058979.  https://doi.org/10.1155/2018/8058979 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, Li G, Tang J, Xiang J (2019) Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer 18(1):40.  https://doi.org/10.1186/s12943-019-0959-5 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, Cisterna B, Bruno S, Romagnoli R, Salizzoni M, Tetta C, Camussi G (2012) Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 30(9):1985–1998.  https://doi.org/10.1002/stem.1161 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Lopatina T, Grange C, Fonsato V, Tapparo M, Brossa A, Fallo S, Pitino A, Herrera-Sanchez MB, Kholia S, Camussi G, Bussolati B (2018) Extracellular vesicles from human liver stem cells inhibit tumor angiogenesis. Int J Cancer.  https://doi.org/10.1002/ijc.31796 CrossRefPubMedGoogle Scholar
  113. 113.
    Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, Liu Y (2015) Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 8:122CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Liang G, Kan S, Zhu Y, Feng S, Feng W, Gao S (2018) Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int J Nanomed 13:585–599CrossRefGoogle Scholar
  115. 115.
    Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM (2018) Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology 67(3):940–954.  https://doi.org/10.1002/hep.29586 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Li H, Yang C, Shi Y, Zhao L (2018) Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J Nanobiotechnol 16(1):103.  https://doi.org/10.1186/s12951-018-0429-z CrossRefGoogle Scholar
  117. 117.
    Li J, Huang S, Zhou Z, Lin W, Chen S, Chen M, Ye Y (2018) Exosomes derived from rAAV/AFP-transfected dendritic cells elicit specific T cell-mediated immune responses against hepatocellular carcinoma. Cancer Manag Res 10:4945–4957.  https://doi.org/10.2147/CMAR.S178326 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136(1):26–36.  https://doi.org/10.1016/j.cell.2008.12.027 CrossRefPubMedGoogle Scholar
  119. 119.
    Taghikhani A, Hassan ZM, Ebrahimi M, Moazzeni SM (2018) microRNA modified tumor-derived exosomes as novel tools for maturation of dendritic cells. J Cell Physiol.  https://doi.org/10.1002/jcp.27626 CrossRefPubMedGoogle Scholar
  120. 120.
    Usman WM, Pham TC, Kwok YY, Vu LT, Ma V, Peng B, Chan YS, Wei L, Chin SM, Azad A, He AB, Leung AYH, Yang M, Shyh-Chang N, Cho WC, Shi J, Le MTN (2018) Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun 9(1):2359.  https://doi.org/10.1038/s41467-018-04791-8 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ TransplantationCAMSHangzhouChina

Personalised recommendations