Advertisement

Acute hydroxyurea-induced replication blockade results in replisome components disengagement from nascent DNA without causing fork collapse

  • Amaia Ercilla
  • Sonia Feu
  • Sergi Aranda
  • Alba Llopis
  • Sólveig Hlín Brynjólfsdóttir
  • Claus Storgaard Sørensen
  • Luis Ignacio Toledo
  • Neus AgellEmail author
Original Article
  • 91 Downloads

Abstract

During S phase, replication forks can encounter several obstacles that lead to fork stalling, which if persistent might result in fork collapse. To avoid this collapse and to preserve the competence to restart, cells have developed mechanisms that maintain fork stability upon replication stress. In this study, we aimed to understand the mechanisms involved in fork stability maintenance in non-transformed human cells by performing an isolation of proteins on nascent DNA-mass spectrometry analysis in hTERT-RPE cells under different replication stress conditions. Our results show that acute hydroxyurea-induced replication blockade causes the accumulation of large amounts of single-stranded DNA at the fork. Remarkably, this results in the disengagement of replisome components from nascent DNA without compromising fork restart. Notably, Cdc45-MCM-GINS helicase maintains its integrity and replisome components remain associated with chromatin upon acute hydroxyurea treatment, whereas replisome stability is lost upon a sustained replication stress that compromises the competence to restart.

Keywords

iPOND Replication fork stability CMG Replication stress 

Abbreviations

CMG

Cdc45-MCM-GINS

DSBs

Double-strand breaks

HR

Homologous recombination

BIR

Break-induced replication

ssDNA

Single-stranded DNA

HU

Hydroxyurea

FBS

Fetal bovine serum

PFA

Paraformaldehyde

RT

Room temperature

PIC

Protease inhibitor cocktail

PI

Propidium iodide

iPOND

Isolation of proteins on nascent DNA

MS

Mass spectrometry

WB

Western blot

QIBC

Quantitative image-based cytometry

RPC

Replication pausing complex

Notes

Acknowledgements

We thank Dr. Surrallés for Fen1, Dr. Mendéz for MCM3, and Dr. Stracker for SMC1 and Pan-MCM antibodies. We also thank the members of our laboratory for their discussion and the advanced optical microscopy unit of the CCiT-UB for its technical assistance. This work was supported by the grants from the Ministerio de Economia y Competitividad (SAF2013-42742-R, SAF2016-76239-R) for N.A; an FPI fellowship from the Ministerio de Ciencia e Innovación for A.E. and A.Ll.; and an FI fellowship from the Generalitat de Catalunya for S.F.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Supplementary material

18_2019_3206_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2412 kb)

References

  1. 1.
    Branzei D, Foiani M (2009) The checkpoint response to replication stress. DNA Repair (Amst) 8:1038–1046.  https://doi.org/10.1016/j.dnarep.2009.04.014 CrossRefGoogle Scholar
  2. 2.
    Petermann E, Orta MLL, Issaeva N et al (2010) Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 37:492–502.  https://doi.org/10.1016/j.molcel.2010.01.021 CrossRefGoogle Scholar
  3. 3.
    Cortez D (2015) Preventing replication fork collapse to maintain genome integrity. DNA Repair (Amst) 32:149–157.  https://doi.org/10.1016/j.dnarep.2015.04.026 CrossRefGoogle Scholar
  4. 4.
    Sakofsky CJ, Ayyar S, Malkova A (2012) Break-induced replication and genome stability. Biomolecules 2:483–504.  https://doi.org/10.3390/biom2040483 CrossRefGoogle Scholar
  5. 5.
    Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548.  https://doi.org/10.1126/science.1083430 CrossRefGoogle Scholar
  6. 6.
    Liu Q, Guntuku S, Cui X-S et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev 14:1448–1459.  https://doi.org/10.1101/gad.14.12.1448 CrossRefGoogle Scholar
  7. 7.
    Toledo LI, Altmeyer M, Rask M-B et al (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155:1088–1103.  https://doi.org/10.1016/j.cell.2013.10.043 CrossRefGoogle Scholar
  8. 8.
    Lossaint G, Larroque M, Ribeyre C et al (2013) FANCD2 binds MCM proteins and controls replisome function upon activation of S phase checkpoint signaling. Mol Cell 51:678–690.  https://doi.org/10.1016/j.molcel.2013.07.023 CrossRefGoogle Scholar
  9. 9.
    Forment JV, Blasius M, Guerini I, Jackson SP (2011) Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation. PLoS One 6:e23517.  https://doi.org/10.1371/journal.pone.0023517 CrossRefGoogle Scholar
  10. 10.
    Cobb JA, Bjergbaek L, Shimada K et al (2003) DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J 22:4325–4336.  https://doi.org/10.1093/emboj/cdg391 CrossRefGoogle Scholar
  11. 11.
    Cobb JA, Schleker T, Rojas V et al (2005) Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev 19:3055–3069.  https://doi.org/10.1101/gad.361805 CrossRefGoogle Scholar
  12. 12.
    Lucca C, Vanoli F, Cotta-Ramusino C et al (2004) Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23:1206–1213.  https://doi.org/10.1038/sj.onc.1207199 CrossRefGoogle Scholar
  13. 13.
    De Piccoli G, Katou Y, Itoh T et al (2012) Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol Cell 45:696–704.  https://doi.org/10.1016/j.molcel.2012.01.007 CrossRefGoogle Scholar
  14. 14.
    Dungrawala H, Rose KL, Bhat KP et al (2015) The replication checkpoint prevents two types of fork collapse without regulating replisome stability. Mol Cell 59:998–1010.  https://doi.org/10.1016/j.molcel.2015.07.030 CrossRefGoogle Scholar
  15. 15.
    Remeseiro S, Losada A (2013) Cohesin, a chromatin engagement ring. Curr Opin Cell Biol 25:63–71.  https://doi.org/10.1016/j.ceb.2012.10.013 CrossRefGoogle Scholar
  16. 16.
    Wu N, Yu H (2012) The Smc complexes in DNA damage response. Cell Biosci 2:5.  https://doi.org/10.1186/2045-3701-2-5 CrossRefGoogle Scholar
  17. 17.
    Hashimoto Y, Ray Chaudhuri A, Lopes M, Costanzo V (2010) Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 17:1305–1311.  https://doi.org/10.1038/nsmb.1927 CrossRefGoogle Scholar
  18. 18.
    Schlacher K, Christ N, Siaud N et al (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145:529–542.  https://doi.org/10.1016/j.cell.2011.03.041 CrossRefGoogle Scholar
  19. 19.
    Schlacher K, Wu H, Jasin M (2012) A distinct replication fork protection pathway connects fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22:106–116.  https://doi.org/10.1016/j.ccr.2012.05.015 CrossRefGoogle Scholar
  20. 20.
    Quinet A, Lemaçon D, Vindigni A (2017) Replication fork reversal: players and guardians. Mol Cell 68:830–833.  https://doi.org/10.1016/j.molcel.2017.11.022 CrossRefGoogle Scholar
  21. 21.
    Thangavel S, Berti M, Levikova M et al (2015) DNA2 drives processing and restart of reversed replication forks in human cells. J Cell Biol 208:545–562.  https://doi.org/10.1083/jcb.201406100 CrossRefGoogle Scholar
  22. 22.
    Zellweger R, Dalcher D, Mutreja K et al (2015) Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol 208:563–579.  https://doi.org/10.1083/jcb.201406099 CrossRefGoogle Scholar
  23. 23.
    Ercilla A, Llopis A, Feu S et al (2016) New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkw132 Google Scholar
  24. 24.
    Aranda S, Rutishauser D, Ernfors P (2014) Identification of a large protein network involved in epigenetic transmission in replicating DNA of embryonic stem cells. Nucleic Acids Res 42:6972–6986.  https://doi.org/10.1093/nar/gku374 CrossRefGoogle Scholar
  25. 25.
    Méndez J, Stillman B (2000) Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 20:8602–8612.  https://doi.org/10.1128/MCB.20.22.8602-8612.2000 CrossRefGoogle Scholar
  26. 26.
    Sirbu BM, Couch FB, Feigerle JT et al (2011) Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 25:1320–1327.  https://doi.org/10.1101/gad.2053211 CrossRefGoogle Scholar
  27. 27.
    Lopez-Contreras AJ, Ruppen I, Nieto-Soler M et al (2013) A proteomic characterization of factors enriched at nascent DNA molecules. Cell Rep 3:1105–1116.  https://doi.org/10.1016/j.celrep.2013.03.009 CrossRefGoogle Scholar
  28. 28.
    Couch FB, Bansbach CE, Driscoll R et al (2013) ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 27:1610–1623.  https://doi.org/10.1101/gad.214080.113 CrossRefGoogle Scholar
  29. 29.
    Kolinjivadi AM, Sannino V, De Antoni A et al (2017) Smarcal1-mediated fork reversal triggers Mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments. Mol Cell 867:881.  https://doi.org/10.1016/j.molcel.2017.07.001 Google Scholar
  30. 30.
    Taglialatela A, Alvarez S, Leuzzi G et al (2017) Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers. Mol Cell 68:414–430.  https://doi.org/10.1016/j.molcel.2017.09.036 (e8) CrossRefGoogle Scholar
  31. 31.
    Gari K, Decaillet C, Delannoy M et al (2008) Remodeling of DNA replication structures by the branch point translocase FANCM. Proc Natl Acad Sci 105:16107–16112.  https://doi.org/10.1073/pnas.0804777105 CrossRefGoogle Scholar
  32. 32.
    Vujanovic M, Krietsch J, Raso MC et al (2017) Replication fork slowing and reversal upon DNA damage require PCNA polyubiquitination and ZRANB3 DNA translocase activity. Mol Cell 67:882–890.  https://doi.org/10.1016/j.molcel.2017.08.010 (e5) CrossRefGoogle Scholar
  33. 33.
    Fugger K, Mistrik M, Neelsen KJ et al (2015) FBH1 catalyzes regression of stalled replication forks. Cell Rep 10:1749–1757.  https://doi.org/10.1016/j.celrep.2015.02.028 CrossRefGoogle Scholar
  34. 34.
    Sartori AA, Lukas C, Coates J et al (2007) Human CtIP promotes DNA end resection. Nature 450:509–514.  https://doi.org/10.1038/nature06337 CrossRefGoogle Scholar
  35. 35.
    Hashimoto Y, Puddu F, Costanzo V (2012) RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat Struct Mol Biol 19:17–24.  https://doi.org/10.1038/nsmb.2177 CrossRefGoogle Scholar
  36. 36.
    Lemaçon D, Jackson J, Quinet A et al (2017) MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun.  https://doi.org/10.1038/s41467-017-01180-5 Google Scholar
  37. 37.
    Fragkos M, Ganier O, Coulombe P, Méchali M (2015) DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 16:360–374.  https://doi.org/10.1038/nrm4002 CrossRefGoogle Scholar
  38. 38.
    Meijer L, Borgne A, Mulner O et al (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536.  https://doi.org/10.1111/j.1432-1033.1997.t01-2-00527.x CrossRefGoogle Scholar
  39. 39.
    Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258.  https://doi.org/10.1016/j.molcel.2009.12.030 CrossRefGoogle Scholar
  40. 40.
    Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2011) Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J Cell Biol 193:995–1007.  https://doi.org/10.1083/jcb.201102003 CrossRefGoogle Scholar
  41. 41.
    Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2010) Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell 140:349–359.  https://doi.org/10.1016/j.cell.2009.12.049 CrossRefGoogle Scholar
  42. 42.
    Labib K (2010) How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev 24:1208–1219.  https://doi.org/10.1101/gad.1933010 CrossRefGoogle Scholar
  43. 43.
    Bianchi J, Rudd SG, Jozwiakowski SK et al (2013) Primpol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol Cell 52:566–573.  https://doi.org/10.1016/j.molcel.2013.10.035 CrossRefGoogle Scholar
  44. 44.
    Mourón S, Rodriguez-Acebes S, Martínez-Jiménez MI et al (2013) Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat Struct Mol Biol 20:1383–1389.  https://doi.org/10.1038/nsmb.2719 CrossRefGoogle Scholar
  45. 45.
    García-Gómez S, Reyes A, Martínez-Jiménez MII et al (2013) PrimPol, an archaic primase/polymerase operating in human cells. Mol Cell 52:541–553.  https://doi.org/10.1016/j.molcel.2013.09.025 CrossRefGoogle Scholar
  46. 46.
    Araki H (2010) Cyclin-dependent kinase-dependent initiation of chromosomal DNA replication. Curr Opin Cell Biol 22:766–771.  https://doi.org/10.1016/j.ceb.2010.07.015 CrossRefGoogle Scholar
  47. 47.
    Errico A, Costanzo V (2012) Mechanisms of replication fork protection: a safeguard for genome stability. Crit Rev Biochem Mol Biol 47:222–235.  https://doi.org/10.3109/10409238.2012.655374 CrossRefGoogle Scholar
  48. 48.
    Lukas C, Savic V, Bekker-Jensen S et al (2011) 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 13:243–253.  https://doi.org/10.1038/ncb2201 CrossRefGoogle Scholar
  49. 49.
    Harrigan JA, Belotserkovskaya R, Coates J et al (2011) Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol 193:97–108.  https://doi.org/10.1083/jcb.201011083 CrossRefGoogle Scholar
  50. 50.
    Moreno A, Carrington JT, Albergante L et al (2016) Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1603252113 Google Scholar
  51. 51.
    Marians KJ (2018) Lesion bypass and the reactivation of stalled replication forks. Annu Rev Biochem 87:217–238CrossRefGoogle Scholar
  52. 52.
    Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9.  https://doi.org/10.1038/ncb2897 CrossRefGoogle Scholar
  53. 53.
    Macheret M, Halazonetis TD (2015) DNA replication stress as a hallmark of cancer. Annu Rev Pathol 10:425–448.  https://doi.org/10.1146/annurev-pathol-012414-040424 CrossRefGoogle Scholar
  54. 54.
    Byun TS, Pacek M, Yee MC et al (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19:1040–1052.  https://doi.org/10.1101/gad.1301205 CrossRefGoogle Scholar
  55. 55.
    Cortez D (2005) Unwind and slow down: checkpoint activation by helicase and polymerase uncoupling. Genes Dev 19:1007–1012.  https://doi.org/10.1101/gad.1316905 CrossRefGoogle Scholar
  56. 56.
    Graham JE, Marians KJ, Kowalczykowski SC (2017) Independent and stochastic action of DNA polymerases in the replisome. Cell 169:1201–1213.  https://doi.org/10.1016/j.cell.2017.05.041 (e17) CrossRefGoogle Scholar
  57. 57.
    Su X, Bernal JA, Venkitaraman AR (2008) Cell-cycle coordination between DNA replication and recombination revealed by a vertebrate N-end rule degron-Rad51. Nat Struct Mol Biol 15:1049–1058.  https://doi.org/10.1038/nsmb.1490 CrossRefGoogle Scholar
  58. 58.
    González-Prieto R, Muñoz-Cabello AM, Cabello-Lobato MJ, Prado F (2013) Rad51 replication fork recruitment is required for DNA damage tolerance. EMBO J 32:1307–1321.  https://doi.org/10.1038/emboj.2013.73 CrossRefGoogle Scholar
  59. 59.
    Sun J, Shi Y, Georgescu RE et al (2015) The architecture of a eukaryotic replisome. Nat Struct Mol Biol 22:976–982.  https://doi.org/10.1038/nsmb.3113 CrossRefGoogle Scholar
  60. 60.
    Schauer GD, O’Donnell ME (2017) Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork. Proc Natl Acad Sci 114:675–680.  https://doi.org/10.1073/pnas.1619748114 CrossRefGoogle Scholar
  61. 61.
    Elvers I, Johansson F, Groth P et al (2011) UV stalled replication forks restart by re-priming in human fibroblasts. Nucleic Acids Res 39:7049–7057.  https://doi.org/10.1093/nar/gkr420 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de BarcelonaBarcelonaSpain
  2. 2.Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
  3. 3.Biotech Research and Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
  4. 4.Centre for Chromosome Stability (CCS)University of CopenhagenCopenhagenDenmark

Personalised recommendations