Advertisement

Mechanisms of synovial joint and articular cartilage development

  • Ryota Chijimatsu
  • Taku SaitoEmail author
Review

Abstract

Articular cartilage is formed at the end of epiphyses in the synovial joint cavity and permanently contributes to the smooth movement of synovial joints. Most skeletal elements develop from transient cartilage by a biological process known as endochondral ossification. Accumulating evidence indicates that articular and growth plate cartilage are derived from different cell sources and that different molecules and signaling pathways regulate these two kinds of cartilage. As the first sign of joint development, the interzone emerges at the presumptive joint site within a pre-cartilage tissue. After that, joint cavitation occurs in the center of the interzone, and the cells in the interzone and its surroundings gradually form articular cartilage and the synovial joint. During joint development, the interzone cells continuously migrate out to the epiphyseal cartilage and the surrounding cells influx into the joint region. These complicated phenomena are regulated by various molecules and signaling pathways, including GDF5, Wnt, IHH, PTHrP, BMP, TGF-β, and FGF. Here, we summarize current literature and discuss the molecular mechanisms underlying joint formation and articular development.

Keywords

Articular cartilage Joint Interzone Chondrocyte 

Abbreviations

BMP

Bone morphogenic protein

CDMP1

Cartilage-derived morphogenetic protein 1

cKO

Conditional knockout

FGF

Fibroblast growth factor

FGFR3

Fibroblast growth factor receptor 3

GAG

Glycosaminoglycan

GDF5

Growth differentiation factor 5

IHH

Indian hedgehog

MAPK

Mitogen-activated protein kinase

NICD

Notch intracellular domain

PTHrP

Parathyroid hormone-related protein

Prg4

Progeoglycan 4

SFZ

Superficial zone

TGF-β

Transforming growth factor-β

Tgfbr2

TGF-β type II receptor

UDPGD

Uridine diphosphoglucose dehydrogenase

Notes

References

  1. 1.
    Oldershaw RA, Baxter MA, Lowe ET et al (2010) Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28:1187–1194.  https://doi.org/10.1038/nbt.1683 CrossRefPubMedGoogle Scholar
  2. 2.
    Chijimatsu R, Ikeya M, Yasui Y et al (2017) Characterization of mesenchymal stem cell-like cells derived from human iPSCs via neural crest development and their application for osteochondral repair. Stem Cells Int.  https://doi.org/10.1155/2017/1960965 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Saito T, Yano F, Mori D et al (2015) Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells. Biomed Res 36:179–186.  https://doi.org/10.2220/biomedres.36.179 CrossRefPubMedGoogle Scholar
  4. 4.
    Yamashita A, Morioka M, Yahara Y et al (2015) Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Rep.  https://doi.org/10.1016/j.stemcr.2015.01.016 CrossRefPubMedGoogle Scholar
  5. 5.
    Inui A, Iwakura T, Reddi A (2012) Human stem cells and articular cartilage regeneration. Cells 1:994–1009.  https://doi.org/10.3390/cells1040994 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chen S, Fu P, Cong R et al (2015) Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes Dis 2:76–95.  https://doi.org/10.1016/j.gendis.2014.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cleary MA, van Osch GJ, Brama PA et al (2015) FGF, TGFbeta and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. J Tissue Eng Regen Med 9:332–342.  https://doi.org/10.1002/term.1744 CrossRefPubMedGoogle Scholar
  8. 8.
    Salva JE, Merrill AE (2017) Signaling networks in joint development. Dev Dyn 246:262–274.  https://doi.org/10.1002/dvdy.24472 CrossRefPubMedGoogle Scholar
  9. 9.
    Decker RS (2017) Articular cartilage and joint development from embryogenesis to adulthood. Semin Cell Dev Biol 62:50–56.  https://doi.org/10.1016/j.semcdb.2016.10.005 CrossRefPubMedGoogle Scholar
  10. 10.
    Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Archer CW, Morrison H, Pitsillides AA (1994) Cellular aspects of the development of diarthrodial joints and articular cartilage. J Anat 184(Pt 3):447–456PubMedPubMedCentralGoogle Scholar
  12. 12.
    Decker RS, Um HB, Dyment NA et al (2017) Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev Biol 426:56–68.  https://doi.org/10.1016/j.ydbio.2017.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Carballo CB, Nakagawa Y, Sekiya I et al (2017) Basic science of articular cartilage. Clin Sports Med 36:413–425.  https://doi.org/10.1016/j.csm.2017.02.001 CrossRefPubMedGoogle Scholar
  14. 14.
    Carter DR, Beaupre GS, Wong M et al (2004) The mechanobiology of articular cartilage development and degeneration. Clin Orthop Relat Res 427:S69–S77CrossRefGoogle Scholar
  15. 15.
    Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ et al (2016) Articular cartilage: from formation to tissue engineering. Biomater Sci 4:734–767.  https://doi.org/10.1039/c6bm00068a CrossRefPubMedGoogle Scholar
  16. 16.
    Hughes LC, Archer CW, Ap Gwynn I (2005) The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review. Eur Cell Mater 9:68–84CrossRefPubMedGoogle Scholar
  17. 17.
    Kozhemyakina E, Lassar AB, Zelzer E (2015) A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 142:817–831.  https://doi.org/10.1242/dev.105536 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Long F, Ornitz DM (2013) Development of the endochondral skeleton. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a008334 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lefebvre V, Bhattaram P (2010) Vertebrate skeletogenesis. Curr Top Dev Biol 90:291–317.  https://doi.org/10.1016/s0070-2153(10)90008-2 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lhuaire M, Martinez A, Kaplan H et al (2014) Human developmental anatomy: microscopic magnetic resonance imaging (muMRI) of four human embryos (from carnegie stage 10 to 20). Ann Anat 196:402–409.  https://doi.org/10.1016/j.aanat.2014.07.004 CrossRefPubMedGoogle Scholar
  21. 21.
    Lhuaire M, Tonnelet R, Renard Y et al (2015) Developmental anatomy of the liver from computerized three-dimensional reconstructions of four human embryos (from carnegie stage 14 to 23). Ann Anat 200:105–113.  https://doi.org/10.1016/j.aanat.2015.02.012 CrossRefPubMedGoogle Scholar
  22. 22.
    O’Rahilly R, Muller F (2010) Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs 192:73–84.  https://doi.org/10.1159/000289817 CrossRefPubMedGoogle Scholar
  23. 23.
    Chen M, Zhu M, Awad H et al (2008) Inhibition of β-catenin signaling causes defects in postnatal cartilage development. J Cell Sci 121:1455–1465.  https://doi.org/10.1242/jcs.020362 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dy P, Smits P, Silvester A et al (2010) Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage. Dev Biol 341:346–359.  https://doi.org/10.1016/j.ydbio.2010.02.024 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kavanagh E, Abiri M, Bland YS et al (2002) Division and death of cells in developing synovial joints and long bones. Cell Biol Int 26:679–688CrossRefPubMedGoogle Scholar
  26. 26.
    Mitrovic DR (1977) Development of the metatarsophalangeal joint of the chick embryo: morphological, ultrastructural and histochemical studies. Am J Anat 150:333–347.  https://doi.org/10.1002/aja.1001500207 CrossRefPubMedGoogle Scholar
  27. 27.
    Ito MM, Kida MY (2000) Morphological and biochemical re-evaluation of the process of cavitation in the rat knee joint: cellular and cell strata alterations in the interzone. J Anat 197(Pt 4):659–679CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Holder N (1977) An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morphol 39:115–127PubMedGoogle Scholar
  29. 29.
    Hyde G, Dover S, Aszodi A et al (2007) Lineage tracing using matrillin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev Biol 304:825–833.  https://doi.org/10.1016/j.ydbio.2007.01.026 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hyde G, Boot-Handford RP, Wallis GA (2008) Col2a1 lineage tracing reveals that the meniscus of the knee joint has a complex cellular origin. J Anat 213:531–538.  https://doi.org/10.1111/j.1469-7580.2008.00966.x CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Winslow BB, Burke AC (2010) Atypical molecular profile for joint development in the avian costal joint. Dev Dyn 239:2547–2557.  https://doi.org/10.1002/dvdy.22388 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Murphy JM, Heinegård D, McIntosh A et al (1999) Distribution of cartilage molecules in the developing mouse joint. Matrix Biol 18:487–497.  https://doi.org/10.1016/s0945-053x(99)00042-6 CrossRefPubMedGoogle Scholar
  33. 33.
    Shwartz Y, Viukov S, Krief S et al (2016) Joint development involves a continuous influx of Gdf5-positive cells. Cell Rep 15:2577–2587.  https://doi.org/10.1016/j.celrep.2016.05.055 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Singh PN, Ray A, Azad K et al (2016) A comprehensive mRNA expression analysis of developing chicken articular cartilage. Gene Expr Patterns 20:22–31.  https://doi.org/10.1016/j.gep.2015.11.001 CrossRefPubMedGoogle Scholar
  35. 35.
    Merino R, Macias D, Ganan Y et al (1999) Expression and function of Gdf-5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol 206:33–45.  https://doi.org/10.1006/dbio.1998.9129 CrossRefPubMedGoogle Scholar
  36. 36.
    Seo H-S, Serra R (2007) Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev Biol 310:304–316.  https://doi.org/10.1016/j.ydbio.2007.07.040 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Spagnoli A, O’Rear L, Chandler RL et al (2007) TGF-beta signaling is essential for joint morphogenesis. J Cell Biol 177:1105–1117.  https://doi.org/10.1083/jcb.200611031 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Seemann P, Schwappacher R, Kjaer KW et al (2005) Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J Clin Investig 115:2373–2381.  https://doi.org/10.1172/jci25118 CrossRefPubMedGoogle Scholar
  39. 39.
    Dowthwaite GP, Edwards JCW, Pitsillides AA (1998) An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem 46:641–651.  https://doi.org/10.1177/002215549804600509 CrossRefPubMedGoogle Scholar
  40. 40.
    Pitsillides AA, Archer CW, Prehm P et al (1995) Alterations in hyaluronan synthesis during developing joint cavitation. J Histochem Cytochem 43:263–273CrossRefPubMedGoogle Scholar
  41. 41.
    Matsumoto K, Li Y, Jakuba C et al (2009) Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb. Development 136:2825–2835.  https://doi.org/10.1242/dev.038505 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bastow ER, Lamb KJ, Lewthwaite JC et al (2005) Selective activation of the MEK-ERK pathway is regulated by mechanical stimuli in forming joints and promotes pericellular matrix formation. J Biol Chem 280:11749–11758.  https://doi.org/10.1074/jbc.m414495200 CrossRefPubMedGoogle Scholar
  43. 43.
    Lewthwaite JC, Bastow ER, Lamb KJ et al (2006) A specific mechanomodulatory role for p38 MAPK in embryonic joint articular surface cell MEK-ERK pathway regulation. J Biol Chem 281:11011–11018.  https://doi.org/10.1074/jbc.m510680200 CrossRefPubMedGoogle Scholar
  44. 44.
    Osborne AC, Lamb KJ, Lewthwaite JC et al (2002) Short-term rigid and flaccid paralyses diminish growth of embryonic chick limbs and abrogate joint cavity formation but differentially preserve pre-cavitated joints. J Musculoskelet Neuronal Interact 2:448–456PubMedGoogle Scholar
  45. 45.
    Drachman DB, Sokoloff L (1966) The role of movement in embryonic joint development. Dev Biol 14:401–420.  https://doi.org/10.1016/0012-1606(66)90022-4 CrossRefGoogle Scholar
  46. 46.
    Mitrovic D (1982) Development of the articular cavity in paralyzed chick embryos and in chick embryo limb buds cultured on chorioallantoic membranes. Acta Anat (Basel) 113:313–324CrossRefGoogle Scholar
  47. 47.
    Kavanagh E, Church VL, Osborne AC et al (2006) Differential regulation of GDF-5 and FGF-2/4 by immobilisation in ovo exposes distinct roles in joint formation. Dev Dyn 235:826–834.  https://doi.org/10.1002/dvdy.20679 CrossRefPubMedGoogle Scholar
  48. 48.
    Roddy KA, Prendergast PJ, Murphy P (2011) Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PLoS One 6:e17526.  https://doi.org/10.1371/journal.pone.0017526 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kahn J, Shwartz Y, Blitz E et al (2009) Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell 16:734–743.  https://doi.org/10.1016/j.devcel.2009.04.013 CrossRefPubMedGoogle Scholar
  50. 50.
    Rolfe RA, Nowlan NC, Kenny EM et al (2014) Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways. BMC Genom 15:48.  https://doi.org/10.1186/1471-2164-15-48 CrossRefGoogle Scholar
  51. 51.
    Storm EE, Huynh TV, Copeland NG et al (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature 368:639–643.  https://doi.org/10.1038/368639a0 CrossRefPubMedGoogle Scholar
  52. 52.
    Polinkovsky A, Robin NH, Thomas JT et al (1997) Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nat Genet 17:18–19.  https://doi.org/10.1038/ng0997-18 CrossRefPubMedGoogle Scholar
  53. 53.
    Thomas JT, Kilpatrick MW, Lin K et al (1997) Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 17:58–64.  https://doi.org/10.1038/ng0997-58 CrossRefPubMedGoogle Scholar
  54. 54.
    Thomas JT, Lin K, Nandedkar M et al (1996) A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet 12:315–317.  https://doi.org/10.1038/ng0396-315 CrossRefPubMedGoogle Scholar
  55. 55.
    Faiyaz-Ul-Haque M, Ahmad W, Zaidi SH et al (2002) Mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene in a kindred affected with fibular hypoplasia and complex brachydactyly (DuPan syndrome). Clin Genet 61:454–458CrossRefPubMedGoogle Scholar
  56. 56.
    Yi SE, Daluiski A, Pederson R et al (2000) The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127:621–630PubMedGoogle Scholar
  57. 57.
    Baur ST, Mai JJ, Dymecki SM (2000) Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. Development 127:605–619PubMedGoogle Scholar
  58. 58.
    Francis-West PH, Abdelfattah A, Chen P et al (1999) Mechanisms of GDF-5 action during skeletal development. Development 126:1305–1315PubMedGoogle Scholar
  59. 59.
    Storm EE, Kingsley DM (1999) GDF5 coordinates bone and joint formation during digit development. Dev Biol 209:11–27.  https://doi.org/10.1006/dbio.1999.9241 CrossRefPubMedGoogle Scholar
  60. 60.
    Hartmann C, Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104:341–351CrossRefPubMedGoogle Scholar
  61. 61.
    Harada M, Takahara M, Zhe P et al (2007) Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5. Osteoarthr Cartil 15:468–474.  https://doi.org/10.1016/j.joca.2006.09.003 CrossRefPubMedGoogle Scholar
  62. 62.
    Wolfman NM, Hattersley G, Cox K et al (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Investig 100:321–330.  https://doi.org/10.1172/jci119537 CrossRefPubMedGoogle Scholar
  63. 63.
    Storm EE, Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122:3969–3979PubMedGoogle Scholar
  64. 64.
    Settle SH Jr, Rountree RB, Sinha A et al (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 254:116–130CrossRefPubMedGoogle Scholar
  65. 65.
    Rountree RB, Schoor M, Chen H et al (2004) BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol 2:e355.  https://doi.org/10.1371/journal.pbio.0020355 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Roelofs AJ, Zupan J, Riemen AHK et al (2017) Joint morphogenetic cells in the adult mammalian synovium. Nat Commun.  https://doi.org/10.1038/ncomms15040 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tsumaki N, Nakase T, Miyaji T et al (2002) Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis. J Bone Miner Res 17:898–906.  https://doi.org/10.1359/jbmr.2002.17.5.898 CrossRefPubMedGoogle Scholar
  68. 68.
    Ray A, Singh PN, Sohaskey ML et al (2015) Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development 142:1169–1179.  https://doi.org/10.1242/dev.110940 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Li T, Longobardi L, Myers TJ et al (2013) Joint TGF-beta type II receptor-expressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev 22:1342–1359.  https://doi.org/10.1089/scd.2012.0207 CrossRefPubMedGoogle Scholar
  70. 70.
    Koyama E, Shibukawa Y, Nagayama M et al (2008) A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316:62–73.  https://doi.org/10.1016/j.ydbio.2008.01.012 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Coleman CM, Vaughan EE, Browe DC et al (2013) Growth differentiation factor-5 enhances in vitro mesenchymal stromal cell chondrogenesis and hypertrophy. Stem Cells Dev 22:1968–1976.  https://doi.org/10.1089/scd.2012.0282 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Liu FL, Lin LH, Sytwu HK et al (2010) GDF-5 is suppressed by IL-1beta and enhances TGF-beta3-mediated chondrogenic differentiation in human rheumatoid fibroblast-like synoviocytes. Exp Mol Pathol 88:163–170.  https://doi.org/10.1016/j.yexmp.2009.09.019 CrossRefPubMedGoogle Scholar
  73. 73.
    Southam L, Rodriguez-Lopez J, Wilkins JM et al (2007) An SNP in the 5′-UTR of GDF5 is associated with osteoarthritis susceptibility in Europeans and with in vivo differences in allelic expression in articular cartilage. Hum Mol Genet 16:2226–2232.  https://doi.org/10.1093/hmg/ddm174 CrossRefPubMedGoogle Scholar
  74. 74.
    Miyamoto Y, Mabuchi A, Shi D et al (2007) A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet 39:529–533.  https://doi.org/10.1038/2005 CrossRefPubMedGoogle Scholar
  75. 75.
    Wu DD, Li GM, Jin W et al (2012) Positive selection on the osteoarthritis-risk and decreased-height associated variants at the GDF5 gene in East Asians. PLoS One 7:e42553.  https://doi.org/10.1371/journal.pone.0042553 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Guo X, Day TF, Jiang X et al (2004) Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev 18:2404–2417.  https://doi.org/10.1101/gad.1230704 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Spater D, Hill TP, Gruber M et al (2006) Role of canonical Wnt-signalling in joint formation. Eur Cell Mater 12:71–80CrossRefPubMedGoogle Scholar
  78. 78.
    Spater D, Hill TP, O’Sullivan RJ et al (2006) Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development 133:3039–3049.  https://doi.org/10.1242/dev.02471 CrossRefPubMedGoogle Scholar
  79. 79.
    Lee H-H, Behringer RR (2007) Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice. PLoS One 2:e450.  https://doi.org/10.1371/journal.pone.0000450 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Mak KK, Chen MH, Day TF et al (2006) Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development 133:3695–3707.  https://doi.org/10.1242/dev.02546 CrossRefPubMedGoogle Scholar
  81. 81.
    Yasuhara R, Ohta Y, Yuasa T et al (2011) Roles of β-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Investig 91:1739.  https://doi.org/10.1038/labinvest.2011.144 CrossRefPubMedGoogle Scholar
  82. 82.
    Cantley L, Saunders C, Guttenberg M et al (2013) Loss of β-catenin induces multifocal periosteal chondroma-like masses in mice. Am J Pathol 182:917–927.  https://doi.org/10.1016/j.ajpath.2012.11.012 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Yuasa T, Kondo N, Yasuhara R et al (2009) Transient activation of Wnt/{beta}-catenin signaling induces abnormal growth plate closure and articular cartilage thickening in postnatal mice. Am J Pathol 175:1993–2003.  https://doi.org/10.2353/ajpath.2009.081173 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557–4568PubMedGoogle Scholar
  85. 85.
    Yamagami T, Molotkov A, Zhou CJ (2009) Canonical Wnt signaling activity during synovial joint development. J Mol Histol 40:311.  https://doi.org/10.1007/s10735-009-9242-1 CrossRefPubMedGoogle Scholar
  86. 86.
    Bernard P, Fleming A, Lacombe A et al (2008) Wnt4 inhibits beta-catenin/TCF signalling by redirecting beta-catenin to the cell membrane. Biol Cell 100:167–177.  https://doi.org/10.1042/bc20070072 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Bernardi H, Gay S, Fedon Y et al (2011) Wnt4 activates the canonical beta-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. Am J Physiol Cell Physiol 300:C1122–C1138.  https://doi.org/10.1152/ajpcell.00214.2010 CrossRefPubMedGoogle Scholar
  88. 88.
    Rhee DK, Marcelino J, Baker M et al (2005) The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Investig 115:622–631.  https://doi.org/10.1172/jci22263 CrossRefPubMedGoogle Scholar
  89. 89.
    St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kobayashi T, Soegiarto DW, Yang Y et al (2005) Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Investig 115:1734–1742.  https://doi.org/10.1172/jci24397 CrossRefPubMedGoogle Scholar
  91. 91.
    Mak KK, Kronenberg HM, Chuang P-T et al (2008) Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development 135:1947–1956.  https://doi.org/10.1242/dev.018044 CrossRefPubMedGoogle Scholar
  92. 92.
    Minina E, Wenzel HM, Kreschel C et al (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128:4523–4534PubMedGoogle Scholar
  93. 93.
    Minina E, Kreschel C, Naski MC et al (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3:439–449CrossRefPubMedGoogle Scholar
  94. 94.
    Weir EC, Philbrick WM, Amling M et al (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 93:10240–10245CrossRefPubMedGoogle Scholar
  95. 95.
    Lanske B, Karaplis AC, Lee K et al (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273:663–666CrossRefPubMedGoogle Scholar
  96. 96.
    Karaplis AC, Luz A, Glowacki J et al (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8:277–289CrossRefPubMedGoogle Scholar
  97. 97.
    Chung UI, Schipani E, McMahon AP et al (2001) Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Investig 107:295–304.  https://doi.org/10.1172/jci11706 CrossRefPubMedGoogle Scholar
  98. 98.
    Koyama E, Ochiai T, Rountree RB et al (2007) Synovial joint formation during mouse limb skeletogenesis. Ann N Y Acad Sci 1116:100–112.  https://doi.org/10.1196/annals.1402.063 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Decker RS, Koyama E, Pacifici M (2014) Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol 39:5–10.  https://doi.org/10.1016/j.matbio.2014.08.006 CrossRefPubMedGoogle Scholar
  100. 100.
    Niedermaier M, Schwabe GC, Fees S et al (2005) An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression. J Clin Investig 115:900–909.  https://doi.org/10.1172/jci23675 CrossRefPubMedGoogle Scholar
  101. 101.
    Koziel L, Wuelling M, Schneider S et al (2005) Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development 132:5249–5260.  https://doi.org/10.1242/dev.02097 CrossRefPubMedGoogle Scholar
  102. 102.
    Huang B-L, Trofka A, Furusawa A et al (2016) An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5′Hoxd–Gli3 antagonism. Nat Commun.  https://doi.org/10.1038/ncomms12903 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Gritli-Linde A, Lewis P, McMahon AP et al (2001) The whereabouts of a morphogen: direct evidence for short- and graded long-range activity of hedgehog signaling peptides. Dev Biol 236:364–386.  https://doi.org/10.1006/dbio.2001.0336 CrossRefPubMedGoogle Scholar
  104. 104.
    Rockel JS, Yu C, Whetstone H et al (2016) Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis. J Clin Investig 126:1649–1663.  https://doi.org/10.1172/jci80205 CrossRefPubMedGoogle Scholar
  105. 105.
    Zhou J, Chen Q, Lanske B et al (2014) Disrupting the Indian hedgehog signaling pathway in vivo attenuates surgically induced osteoarthritis progression in Col2a1-CreERT2; Ihhfl/fl mice. Arthritis Res Ther 16:R11.  https://doi.org/10.1186/ar4437 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Zhang C, Wei X, Chen C et al (2014) Indian hedgehog in synovial fluid is a novel marker for early cartilage lesions in human knee joint. Int J Mol Sci 15:7250–7265.  https://doi.org/10.3390/ijms15057250 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Shuang F, Zhou Y, Hou S-X et al (2015) Indian Hedgehog signaling pathway members are associated with magnetic resonance imaging manifestations and pathological scores in lumbar facet joint osteoarthritis. Sci Rep.  https://doi.org/10.1038/srep10290 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Woods S, Barter MJ, Elliott HR et al (2018) miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse. Matrix Biol.  https://doi.org/10.1016/j.matbio.2018.08.009 CrossRefPubMedGoogle Scholar
  109. 109.
    Guo X, Mak KK, Taketo MM et al (2009) The Wnt/β-catenin pathway interacts differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation. PLoS One 4:e6067.  https://doi.org/10.1371/journal.pone.0006067 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Macica C, Liang G, Nasiri A et al (2011) Genetic evidence of the regulatory role of parathyroid hormone-related protein in articular chondrocyte maintenance in an experimental mouse model. Arthritis Rheum 63:3333–3343.  https://doi.org/10.1002/art.30515 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Chen X, Macica CM, Nasiri A et al (2008) Regulation of articular chondrocyte proliferation and differentiation by Indian hedgehog and parathyroid hormone-related protein in mice. Arthritis Rheum 58:3788–3797.  https://doi.org/10.1002/art.23985 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Chen X, Macica CM, Dreyer BE et al (2006) Initial characterization of PTH-related protein gene-driven lacZ expression in the mouse. J Bone Miner Res 21:113–123.  https://doi.org/10.1359/jbmr.051005 CrossRefPubMedGoogle Scholar
  113. 113.
    Sampson ER, Hilton MJ, Tian Y et al (2011) Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.3002214 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Ogawa H, Kozhemyakina E, Hung HH et al (2014) Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways. Genes Dev 28:127–139.  https://doi.org/10.1101/gad.231969.113 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Salazar VS, Gamer LW, Rosen V (2016) BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 12:203–221.  https://doi.org/10.1038/nrendo.2016.12 CrossRefPubMedGoogle Scholar
  116. 116.
    Retting KN, Song B, Yoon BS et al (2009) BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136:1093–1104CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Francis-West PH, Parish J, Lee K et al (1999) BMP/GDF-signalling interactions during synovial joint development. Cell Tissue Res 296:111–119CrossRefPubMedGoogle Scholar
  118. 118.
    Pathi S, Rutenberg JB, Johnson RL et al (1999) Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol 209:239–253.  https://doi.org/10.1006/dbio.1998.9181 CrossRefPubMedGoogle Scholar
  119. 119.
    Singh PNP, Shea CA, Sonker SK et al (2018) Precise spatial restriction of BMP signaling in developing joints is perturbed upon loss of embryo movement. Development.  https://doi.org/10.1242/dev.153460 CrossRefPubMedGoogle Scholar
  120. 120.
    Singh PNP, Yadav US, Azad K et al (2018) NFIA and GATA3 are crucial regulators of embryonic articular cartilage differentiation. Development.  https://doi.org/10.1242/dev.156554 CrossRefPubMedGoogle Scholar
  121. 121.
    Zhu W, Kim J, Cheng C et al (2006) Noggin regulation of bone morphogenetic protein (BMP) 2/7 heterodimer activity in vitro. Bone 39:61–71.  https://doi.org/10.1016/j.bone.2005.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606CrossRefPubMedGoogle Scholar
  123. 123.
    Egawa S, Saito D, Abe G et al (2018) Morphogenetic mechanism of the acquisition of the dinosaur-type acetabulum. R Soc Open Sci.  https://doi.org/10.1098/rsos.180604 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Amarilio R, Viukov SV, Sharir A et al (2007) HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134:3917–3928.  https://doi.org/10.1242/dev.008441 CrossRefPubMedGoogle Scholar
  125. 125.
    Brunet LJ, McMahon JA, McMahon AP et al (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280:1455–1457CrossRefPubMedGoogle Scholar
  126. 126.
    Wijgerde M, Karp S, McMahon J et al (2005) Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Dev Biol 286:149–157.  https://doi.org/10.1016/j.ydbio.2005.07.016 CrossRefPubMedGoogle Scholar
  127. 127.
    Seemann P, Brehm A, König J et al (2009) Mutations in GDF5 reveal a key residue mediating BMP inhibition by NOGGIN. PLoS Genet 5:e1000747.  https://doi.org/10.1371/journal.pgen.1000747 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Garrison P, Yue S, Hanson J et al (2017) Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage. PLoS One 12:e0176752.  https://doi.org/10.1371/journal.pone.0176752 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Gelse K, Ekici AB, Cipa F et al (2012) Molecular differentiation between osteophytic and articular cartilage–clues for a transient and permanent chondrocyte phenotype. Osteoarthr Cartil 20:162–171.  https://doi.org/10.1016/j.joca.2011.12.004 CrossRefPubMedGoogle Scholar
  130. 130.
    Chang SH, Mori D, Kobayashi H et al (2019) Excessive mechanical loading promotes osteoarthritis through the gremlin-1–NF-κB pathway. Nat Commun 10:1442.  https://doi.org/10.1038/s41467-019-09491-5 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Shen J, Li J, Wang B et al (2013) Deletion of the transforming growth factor beta receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice. Arthritis Rheum 65:3107–3119.  https://doi.org/10.1002/art.38122 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Finnson KW, Chi Y, Bou-Gharios G et al (2012) TGF-b signaling in cartilage homeostasis and osteoarthritis. Front Biosci (Schol Ed) 4:251–268CrossRefGoogle Scholar
  133. 133.
    Hayes AJ, MacPherson S, Morrison H et al (2001) The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl.) 203:469–479.  https://doi.org/10.1007/s004290100178 CrossRefGoogle Scholar
  134. 134.
    van Caam A, Madej W, Thijssen E et al (2016) Expression of TGFbeta-family signalling components in ageing cartilage: age-related loss of TGFbeta and BMP receptors. Osteoarthr Cartil 24:1235–1245.  https://doi.org/10.1016/j.joca.2016.02.008 CrossRefPubMedGoogle Scholar
  135. 135.
    Oo WM, Yu SP, Daniel MS et al (2018) Disease-modifying drugs in osteoarthritis: current understanding and future therapeutics. Expert Opin Emerg Drugs 23:331–347.  https://doi.org/10.1080/14728214.2018.1547706 CrossRefPubMedGoogle Scholar
  136. 136.
    Pelton RW, Saxena B, Jones M et al (1991) Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–1105CrossRefPubMedGoogle Scholar
  137. 137.
    Wu M, Chen G, Li Y-P (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009.  https://doi.org/10.1038/boneres.2016.9 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Lim J, Tu X, Choi K et al (2015) BMP-Smad4 signaling is required for precartilaginous mesenchymal condensation independent of Sox9 in the mouse. Dev Biol 400:132–138.  https://doi.org/10.1016/j.ydbio.2015.01.022 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Bénazet JD, Pignatti E, Nugent A et al (2012) Smad4 is required to induce digit ray primordia and to initiate the aggregation and differentiation of chondrogenic progenitors in mouse limb buds. Development 139:4250–4260.  https://doi.org/10.1242/dev.084822 CrossRefPubMedGoogle Scholar
  140. 140.
    Zhang J, Tan X, Li W et al (2005) Smad4 is required for the normal organization of the cartilage growth plate. Dev Biol 284:311–322.  https://doi.org/10.1016/j.ydbio.2005.05.036 CrossRefPubMedGoogle Scholar
  141. 141.
    Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18–27.  https://doi.org/10.1002/dvdy.21388 CrossRefPubMedGoogle Scholar
  142. 142.
    Ohbayashi N, Shibayama M, Kurotaki Y et al (2002) FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 16:870–879.  https://doi.org/10.1101/gad.965702 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Liu Z, Xu J, Colvin JS et al (2002) Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 16:859–869.  https://doi.org/10.1101/gad.965602 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Chen L, Adar R, Yang X et al (1999) Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Investig 104:1517–1525.  https://doi.org/10.1172/jci6690 CrossRefPubMedGoogle Scholar
  145. 145.
    Shiang R, Thompson LM, Zhu YZ et al (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–342CrossRefPubMedGoogle Scholar
  146. 146.
    Deng C, Li C, Chen L et al (2001) A Ser365 → Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 10:457–466.  https://doi.org/10.1093/hmg/10.5.457 CrossRefPubMedGoogle Scholar
  147. 147.
    Peters K, Ornitz D, Werner S et al (1993) Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol 155:423–430.  https://doi.org/10.1006/dbio.1993.1040 CrossRefPubMedGoogle Scholar
  148. 148.
    Molténi A, Modrowski D, Hott M et al (1999) Differential expression of fibroblast growth factor receptor-1, -2, and -3 and syndecan-1, -2, and -4 in neonatal rat mandibular condyle and calvaria during osteogenic differentiation in vitro. Bone 24:337–347.  https://doi.org/10.1016/s8756-3282(98)00191-4 CrossRefPubMedGoogle Scholar
  149. 149.
    Hellingman CA, Koevoet W, Kops N et al (2010) Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development. Tissue Eng Part A 16:545–556.  https://doi.org/10.1089/ten.tea.2008.0551 CrossRefPubMedGoogle Scholar
  150. 150.
    Lazarus JE, Hegde A, Andrade AC et al (2007) Fibroblast growth factor expression in the postnatal growth plate. Bone 40:577–586.  https://doi.org/10.1016/j.bone.2006.10.013 CrossRefPubMedGoogle Scholar
  151. 151.
    Hojo H, Ohba S, Taniguchi K et al (2013) Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. J Biol Chem 288:9924–9932.  https://doi.org/10.1074/jbc.m112.409342 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Kohn A, Dong Y, Mirando AJ et al (2012) Cartilage-specific RBPjkappa-dependent and -independent Notch signals regulate cartilage and bone development. Development 139:1198–1212.  https://doi.org/10.1242/dev.070649 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Ellsworth JL, Berry J, Bukowski T et al (2002) Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthr Cartil 10:308–320.  https://doi.org/10.1053/joca.2002.0514 CrossRefPubMedGoogle Scholar
  154. 154.
    Karuppaiah K, Yu K, Lim J et al (2016) FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth. Development 143:1811–1822.  https://doi.org/10.1242/dev.131722 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Colvin JS, Bohne BA, Harding GW et al (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12:390–397.  https://doi.org/10.1038/ng0496-390 CrossRefPubMedGoogle Scholar
  156. 156.
    Wen X, Li X, Tang Y et al (2016) Chondrocyte FGFR3 regulates bone mass by inhibiting osteogenesis. J Biol Chem 291:24912–24921.  https://doi.org/10.1074/jbc.m116.730093 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Li M, Seki Y, Freitas PHL et al (2010) FGFR3 down-regulates PTH/PTHrP receptor gene expression by mediating JAK/STAT signaling in chondrocytic cell line. J Electron Microsc (Tokyo) 59:227–236.  https://doi.org/10.1093/jmicro/dfq002 CrossRefGoogle Scholar
  158. 158.
    Naski MC, Colvin JS, Coffin JD et al (1998) Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125:4977–4988PubMedGoogle Scholar
  159. 159.
    Zhou S, Xie Y, Tang J et al (2015) FGFR3 deficiency causes multiple chondroma-like lesions by upregulating hedgehog signaling. PLoS Genet 11:e1005214.  https://doi.org/10.1371/journal.pgen.1005214 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Reinhold MI, Naski MC (2007) Direct interactions of Runx2 and canonical Wnt signaling induce FGF18. J Biol Chem 282:3653–3663.  https://doi.org/10.1074/jbc.m608995200 CrossRefPubMedGoogle Scholar
  161. 161.
    Shimokawa T, Furukawa Y, Sakai M et al (2003) Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/T-cell factor complex. Cancer Res 63:6116–6120PubMedGoogle Scholar
  162. 162.
    Li X, Ellman MB, Kroin JS et al (2012) Species-specific biological effects of FGF-2 in articular cartilage: implication for distinct roles within the FGF receptor family. J Cell Biochem 113:2532–2542.  https://doi.org/10.1002/jcb.24129 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Mori Y, Saito T, Chang SH et al (2014) Identification of fibroblast growth factor-18 as a molecule to protect adult articular cartilage by gene expression profiling. J Biol Chem 289:10192–10200.  https://doi.org/10.1074/jbc.m113.524090 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Valverde-Franco G, Binette JS, Li W et al (2006) Defects in articular cartilage metabolism and early arthritis in fibroblast growth factor receptor 3 deficient mice. Hum Mol Genet 15:1783–1792.  https://doi.org/10.1093/hmg/ddl100 CrossRefPubMedGoogle Scholar
  165. 165.
    Zhou S, Xie Y, Li W et al (2016) Conditional deletion of Fgfr3 in chondrocytes leads to osteoarthritis-like defects in temporomandibular joint of adult mice. Sci Rep 6:24039.  https://doi.org/10.1038/srep24039 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Tang J, Su N, Zhou S et al (2016) Fibroblast growth factor receptor 3 inhibits osteoarthritis progression in the knee joints of adult mice. Arthritis Rheumatol 68:2432–2443.  https://doi.org/10.1002/art.39739 CrossRefPubMedGoogle Scholar
  167. 167.
    Ellman MB, Yan D, Ahmadinia K et al (2013) Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem 114:735–742.  https://doi.org/10.1002/jcb.24418 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Yan D, Chen D, Cool SM et al (2011) Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res Ther 13:R130.  https://doi.org/10.1186/ar3441 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Shu CC, Jackson MT, Smith MM et al (2016) Ablation of perlecan domain 1 heparan sulfate reduces progressive cartilage degradation, synovitis, and osteophyte size in a preclinical model of posttraumatic osteoarthritis. Arthritis Rheumatol 68:868–879.  https://doi.org/10.1002/art.39529 CrossRefPubMedGoogle Scholar
  170. 170.
    Moore EE, Bendele AM, Thompson DL et al (2005) Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthr Cartil 13:623–631.  https://doi.org/10.1016/j.joca.2005.03.003 CrossRefPubMedGoogle Scholar
  171. 171.
    Evans CH, Kraus VB, Setton LA (2014) Progress in intra-articular therapy. Nat Rev Rheumatol 10:11–22.  https://doi.org/10.1038/nrrheum.2013.159 CrossRefPubMedGoogle Scholar
  172. 172.
    Zhang Z, Wang Y, Li M et al (2014) Fibroblast growth factor 18 increases the trophic effects of bone marrow mesenchymal stem cells on chondrocytes isolated from late stage osteoarthritic patients. Stem Cells Int.  https://doi.org/10.1155/2014/125683 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Kozhemyakina E, Zhang M, Ionescu A et al (2015) Identification of a Prg4-expressing articular cartilage progenitor cell population in mice. Arthritis Rheumatol 67:1261–1273.  https://doi.org/10.1002/art.39030 CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Tavella S, Biticchi R, Schito A et al (2004) Targeted expression of SHH affects chondrocyte differentiation, growth plate organization, and Sox9 expression. J Bone Miner Res 19:1678–1688.  https://doi.org/10.1359/jbmr.040706 CrossRefPubMedGoogle Scholar
  175. 175.
    Schumacher BL, Block JA, Schmid TM et al (1994) A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 311:144–152.  https://doi.org/10.1006/abbi.1994.1219 CrossRefPubMedGoogle Scholar
  176. 176.
    Schumacher BL, Hughes CE, Kuettner KE et al (1999) Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J Orthop Res 17:110–120.  https://doi.org/10.1002/jor.1100170117 CrossRefPubMedGoogle Scholar
  177. 177.
    Coles JM, Zhang L, Blum JJ et al (2010) Loss of cartilage structure, stiffness, and frictional properties in mice lacking PRG4. Arthritis Rheum 62:1666–1674.  https://doi.org/10.1002/art.27436 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Ruan MZC, Erez A, Guse K et al (2013) Proteoglycan 4 expression protects against the development of osteoarthritis. Sci Transl Med 5:176ra34.  https://doi.org/10.1126/scitranslmed.3005409 CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Kosinska MK, Ludwig TE, Liebisch G et al (2015) Articular joint lubricants during osteoarthritis and rheumatoid arthritis display altered levels and molecular species. PLoS One 10:e0125192.  https://doi.org/10.1371/journal.pone.0125192 CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Ogawa H, Matsumoto K, Terabayashi N et al (2017) Association of lubricin concentration in synovial fluid and clinical status of osteoarthritic knee. Mod Rheumatol 27:489–492.  https://doi.org/10.1080/14397595.2016.1209829 CrossRefPubMedGoogle Scholar
  181. 181.
    Flannery CR, Zollner R, Corcoran C et al (2009) Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum 60:840–847.  https://doi.org/10.1002/art.24304 CrossRefPubMedGoogle Scholar
  182. 182.
    Cui Z, Xu C, Li X et al (2015) Treatment with recombinant lubricin attenuates osteoarthritis by positive feedback loop between articular cartilage and subchondral bone in ovariectomized rats. Bone 74:37–47.  https://doi.org/10.1016/j.bone.2014.12.065 CrossRefPubMedGoogle Scholar
  183. 183.
    Bao JP, Chen WP, Wu LD (2011) Lubricin: a novel potential biotherapeutic approaches for the treatment of osteoarthritis. Mol Biol Rep 38:2879–2885.  https://doi.org/10.1007/s11033-010-9949-9 CrossRefPubMedGoogle Scholar
  184. 184.
    Grogan SP, Miyaki S, Asahara H et al (2009) Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 11:R85.  https://doi.org/10.1186/ar2719 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Lee Y, Choi J, Hwang NS (2018) Regulation of lubricin for functional cartilage tissue regeneration: a review. Biomater Res 22:9.  https://doi.org/10.1186/s40824-018-0118-x CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Matsuzaki T, Alvarez-Garcia O, Mokuda S et al (2018) FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.aan0746 CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Niikura T, Reddi AH (2007) Differential regulation of lubricin/superficial zone protein by transforming growth factor beta/bone morphogenetic protein superfamily members in articular chondrocytes and synoviocytes. Arthritis Rheum 56:2312–2321.  https://doi.org/10.1002/art.22659 CrossRefPubMedGoogle Scholar
  188. 188.
    Hill A, Waller KA, Cui Y et al (2015) Lubricin restoration in a mouse model of congenital deficiency. Arthritis Rheumatol 67:3070–3081.  https://doi.org/10.1002/art.39276 CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138:3593–3612.  https://doi.org/10.1242/dev.063610 CrossRefPubMedGoogle Scholar
  190. 190.
    Kovall RA, Gebelein B, Sprinzak D et al (2017) The canonical Notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev Cell 41:228–241.  https://doi.org/10.1016/j.devcel.2017.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Dong Y, Jesse AM, Kohn A et al (2010) RBPjκ-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development (Cambridge, England) 137:1461–1471.  https://doi.org/10.1242/dev.042911 CrossRefGoogle Scholar
  192. 192.
    Mead TJ, Yutzey KE (2009) Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci USA 106:14420–14425.  https://doi.org/10.1073/pnas.0902306106 CrossRefPubMedGoogle Scholar
  193. 193.
    Mirando AJ, Liu Z, Moore T et al (2013) RBP-Jkappa-dependent Notch signaling is required for murine articular cartilage and joint maintenance. Arthritis Rheum 65:2623–2633.  https://doi.org/10.1002/art.38076 CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Hosaka Y, Saito T, Sugita S et al (2013) Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc Natl Acad Sci USA 110:1875–1880.  https://doi.org/10.1073/pnas.1207458110 CrossRefPubMedGoogle Scholar
  195. 195.
    Liu Z, Chen J, Mirando AJ et al (2015) A dual role for NOTCH signaling in joint cartilage maintenance and osteoarthritis. Sci Signal 8:ra71.  https://doi.org/10.1126/scisignal.aaa3792 CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Dowthwaite GP, Bishop JC, Redman SN et al (2004) The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117:889–897.  https://doi.org/10.1242/jcs.00912 CrossRefPubMedGoogle Scholar
  197. 197.
    Li L, Newton PT, Bouderlique T et al (2017) Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB J 31:1067–1084.  https://doi.org/10.1096/fj.201600918r CrossRefPubMedGoogle Scholar
  198. 198.
    Karlsson C, Brantsing C, Egell S et al (2008) Notch1, Jagged1, and HES5 are abundantly expressed in osteoarthritis. Cells Tissues Organs 188:287–298.  https://doi.org/10.1159/000121610 CrossRefPubMedGoogle Scholar
  199. 199.
    Liu Z, Ren Y, Mirando AJ et al (2016) Notch signaling in postnatal joint chondrocytes, but not subchondral osteoblasts, is required for articular cartilage and joint maintenance. Osteoarthr Cartil 24:740–751.  https://doi.org/10.1016/j.joca.2015.10.015 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Bone and Cartilage Regenerative Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
  2. 2.Sensory and Motor System Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan

Personalised recommendations